In this article, we study shear flow of active extensile filaments confined in a narrow channel. They behave as nematic liquid crystals that we assumed are governed by the Ericksen–Leslie equations of balance of linear and angular momentum. The addition of an activity source term in the Leslie stress captures the role of the biofuel prompting the dynamics. The dimensionless form of the governing system includes the Ericksen, activity, and Reynolds numbers together with the aspect ratio of the channel as the main driving parameters affecting the stability of the system. The active system that guides our analysis is composed of microtubules concentrated in bundles, hundreds of microns long, placed in a narrow channel domain, of aspect ratios in the range between 102 and 103 dimensionless units, which are able to align due to the combination of adenosine triphosphate-supplied energy and confinement effects. Specifically, this work aims at studying the role of confinement on the behavior of active matter. It is experimentally observed that, at an appropriately low activity and channel width, the active flow is laminar, with the linear velocity profile and the angle of alignment analogous to those in passive shear, developing defects and becoming chaotic, at a large activity and a channel aspect ratio. The present work addresses the laminar regime, where defect formation does not play a role. We perform a normal mode stability analysis of the base shear flow. A comprehensive description of the stability properties is obtained in terms of the driving parameters of the system. Our main finding, in addition to the geometry and magnitude of the flow profiles, and also consistent with the experimental observations, is that the transition to instability of the uniformly aligned shear flow occurs at a threshold value of the activity parameter, with the transition also being affected by the channel aspect ratio. The role of the parameters on the vorticity and angular profiles of the perturbing flow is also analyzed and found to agree with the experimentally observed transition to turbulent regimes. A spectral method based on Chebyshev polynomials is used to solve the generalized eigenvalue problems arising in the stability analysis.

1.
S.
Ramaswamy
, “
The mechanics and statistics of active matter
,”
Annu. Rev. Condens. Matter Phys.
1
(
1
),
323
345
(
2010
).
2.
M. C.
Marchetti
,
J. F.
Joanny
,
S.
Ramaswamy
,
T. B.
Liverpool
,
J.
Prost
,
M.
Rao
, and
R.
Aditi Simha
, “
Hydrodynamics of soft active matter
,”
Rev. Mod. Phys.
85
,
1143
1189
(
2013
).
3.
J.
Hardoüin
,
R.
Hughes
,
A.
Doostmohammadi
,
J.
Laurent
,
T.
Lopez-Leon
,
J. M.
Yeomans
,
J.
Ignés-Mullol
, and
F.
Sagués
, “
Reconfigurable flows and defect landscape of confined active nematics
,”
Commun. Phys.
2
(
1
),
121
(
2019
).
4.
R.
Voituriez
,
J.-F.
Joanny
, and
J.
Prost
, “
Spontaneous flow transition in active polar gels
,”
Europhys. Lett.
70
(
3
),
404
(
2005
).
5.
G.
Duclos
,
C.
Blanch-Mercader
,
V.
Yashunsky
,
G.
Salbreux
,
J.-F.
Joanny
,
J.
Prost
, and
P.
Silberzan
, “
Spontaneous shear flow in confined cellular nematics
,”
Nat. Phys.
14
(
7
),
728
732
(
2018
).
6.
T. N.
Shendruk
,
A.
Doostmohammadi
,
K.
Thijssen
, and
J. M.
Yeomans
, “
Dancing disclinations in confined active nematics
,”
Soft Matter
13
(
21
),
3853
3862
(
2017
).
7.
P.
Guillamat
,
J.
Ignés-Mullol
, and
F.
Sagués
, “
Taming active turbulence with patterned soft interfaces
,”
Nat. Commun.
8
(
1
),
564
(
2017
).
8.
B. J.
Edwards
,
A. N.
Beris
, and
M.
Grmela
, “
Generalized constitutive equation for polymeric liquid crystals part 1. Model formulation using the Hamiltonian (Poisson bracket) formulation
,”
J. Nonnewton. Fluid Mech.
35
(
1
),
51
72
(
1990
).
9.
J.
Walton
,
G.
McKay
,
M.
Grinfeld
, and
N. J.
Mottram
, “
Pressure-driven changes to spontaneous flow in active nematic liquid crystals
,”
Eur. Phys. J. E
43
(
8
),
51
(
2020
).
10.
D.
Marenduzzo
,
E.
Orlandini
, and
J. M.
Yeomans
, “
Hydrodynamics and rheology of active liquid crystals: A numerical investigation
,”
Phys. Rev. Lett.
98
(
11
),
118102
(
2007
).
11.
S. A.
Edwards
and
J. M.
Yeomans
, “
Spontaneous flow states in active nematics: A unified picture
,”
Europhys. Lett.
85
(
1
),
18008
(
2009
).
12.
P.
Guillamat
,
J.
Ignés-Mullol
, and
F.
Sagués
, “
Control of active nematics with passive liquid crystals
,”
Mol. Cryst. Liq. Cryst.
646
(
1
),
226
234
(
2017
).
13.
A.
Doostmohammadi
,
T. N.
Shendruk
,
K.
Thijssen
, and
J. M.
Yeomans
, “
Onset of meso-scale turbulence in active nematics
,”
Nat. Commun.
8
(
1
),
15326
(
2017
).
14.
A.
Doostmohammadi
,
J.
Ignés-Mullol
,
J. M.
Yeomans
, and
F.
Sagués
, “
Active nematics
,”
Nat. Commun.
9
(
1
),
3246
(
2018
).
15.
S. P.
Thampi
,
R.
Golestanian
, and
J. M.
Yeomans
, “
Vorticity, defects and correlations in active turbulence
,”
Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
372
(
2029
),
20130366
(
2014
).
16.
F. M.
Leslie
, “
Continuum theory for nematic liquid crystals
,”
Contin. Mech. Thermodyn.
4
(
3
),
167
175
(
1992
).
17.
M.
Carme Calderer
and
B.
Mukherjee
, “
Chevron patterns in liquid crystal flows
,”
Physica D
98
(
1
),
201
224
(
1996
).
18.
M.
Carme Calderer
and
B.
Mukherjee
, “
On Poiseuille flow of liquid crystals
,”
Liq. Cryst.
22
(
2
),
121
135
(
1997
).
19.
M.
Carme Calderer
,
C. A.
Garavito Garzón
, and
C.
Luo
, “
Liquid crystal elastomers and phase transitions in actin rod networks
,”
SIAM J. Appl. Math.
74
(
3
),
649
675
(
2014
).
20.
D.
Baalss
and
S.
Hess
, “
The viscosity coefficients of oriented nematic and nematic discotic liquid crystals; affine transformation model
,”
Z. Naturforsch. A
43
(
7
),
662
670
(
1988
).
21.
M.
Carme Calderer
and
B.
Mukherjee
, “
Some mathematical issues in the modeling of flow phenomena of polymeric liquid crystals
,”
J. Rheol.
42
(
6
),
1519
1536
(
1998
).
22.
K.-C.
Toh
and
L. N.
Trefethen
, “
The Chebyshev polynomials of a matrix
,”
SIAM J. Matrix Anal. Appl.
20
(
2
),
400
419
(
1998
).
23.
L. N.
Trefethen
, Spectral Methods in MATLAB (SIAM: Society for Industrial & Applied Mathematics, 2001).
24.
J. J.
Dongarra
,
B.
Straughan
, and
D. W.
Walker
, “
Chebyshev tau-QZ algorithm methods for calculating spectra of hydrodynamic stability problems
,”
Appl. Numer. Math.
22
(
4
),
399
434
(
1996
).
25.
D.
Bourne
, “
Hydrodynamic stability, the Chebyshev tau method and spurious eigenvalues
,”
Continuum Mech. Thermodyn.
15
(
6
),
571
579
(
2003
).
26.
A. E.
Fraser
,
P. W.
Terry
,
E. G.
Zweibel
, and
M. J.
Pueschel
, “
Coupling of damped and growing modes in unstable shear flow
,”
Phys. Plasmas
24
(
6
),
6
(
2017
).
27.
G.
Ingram Taylor
, “
VIII. Stability of a viscous liquid contained between two rotating cylinders
,”
Philos. Trans. R. Soc. Lond. Ser. A
223
(
605–615
),
289
343
(
1923
).
28.
P. G.
Drazin
and
L. N.
Howard
, “
Hydrodynamic Stability of Parallel Flow of Inviscid Fluid
,” in
Advances in Applied Mechanics
, edited by
G. G.
Chernyi
et al. (
Academic Press
,
New York
,
1966
), Vol.
9
, pp.
1
89
.
29.
T.
Sanchez
,
D. T. N.
Chen
,
S. J.
DeCamp
,
M.
Heymann
, and
Z.
Dogic
, “
Spontaneous motion in hierarchically assembled active matter
,”
Nature
491
(
7424
),
431
434
(
2012
).
30.
S.
Ambadipudi
,
J.
Biernat
,
D.
Riedel
,
E.
Mandelkow
, and
M.
Zweckstetter
, “
Liquid–liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau
,”
Nat. Commun.
8
,
275
(
2017
).
31.
F.
Matthews Leslie
, “
Some thermal effects in cholesteric liquid crystals
,”
Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci.
307
(
1490
),
359
372
(
1968
).

Supplementary Material

You do not currently have access to this content.