In this paper, we present a presumably new approach in order to solve the time-fractional Drinfeld–Sokolov–Wilson system, which is based upon the Liouville–Caputo fractional integral (LCFI), the Caputo–Fabrizio fractional integral, and the Atangana–Baleanu fractional integral in the sense of the LCFI by using the Adomian decomposition method. We compare the approximate solutions with the exact solution (if available), and we find an excellent agreement between them. In the case of a non-integer order, we evaluate the residual error function, thereby showing that the order of the error is very small. In all of our calculations, we apply the software package, Mathematica (Version 9).
REFERENCES
1.
A. A.
Kilbas
, H. M.
Srivastava
, and J. J.
Trujillo
, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies Vol. 204 (Elsevier North-Holland Science Publishers, Amsterdam, 2006).2.
K. S.
Miller
and B.
Ross
, An Introduction to Fractional Calculus and Fractional Differential Equations (John Wiley and Sons, New York, 1993).3.
D. S.
Jones
, M. J.
Plank
, and B. D.
Sleeman
, Differential Equations and Mathematical Biology, 2nd ed., Series on Mathematical Biology (Chapman and Hall, CRC Press, Boca Raton, FL, 2009).4.
J. M.
Amigó
and M.
Small
, “Mathematical methods in medicine: Neuroscience, cardiology and pathology
,” Philos. Trans. A Math. Phys. Eng. Sci.
375
, 20170016
(2017
).5.
K. M.
Saad
, “Comparing the Caputo, Caputo-Fabrizio and Atangana-Baleanu derivative with fractional order: Fractional cubic isothermal auto-catalytic chemical system
,” Eur. Phys. J. Plus
133
, 1
(2018
). 6.
M. A.
Khan
, Z.
Hammouch
, and D.
Baleanu
, “Modeling the dynamics of hepatitis E via the Caputo-Fabrizio derivative
,” Math. Model. Nat. Phenom.
14
, 1
(2019
).7.
8.
I.
Podlubny
, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering Vol. 198 (Academic Press, San Diego, CA, 1999).9.
Applications of Fractional Calculus in Physics, edited by R. Hilfer (World Scientific Publishing Company, Singapore, 2000).
10.
C.-P.
Li
and W.-H.
Deng
, “Remarks on fractional derivatives
,” Appl. Math. Comput.
187
, 777
–784
(2007
).11.
M.
Popolizio
and R.
Garrappa
, “On the use of matrix functions for fractional partial differential equations
,” Math. Comput. Simul.
81
, 1045
–1056
(2011
). 12.
M. A.
Abdelkawy
, M. A.
Zaky
, A. H.
Bhrawy
, and D.
Baleanu
, “Numerical simulation of time variable fractional order mobile-immobile advection-dispersion model
,” Rom. Rep. Phys.
67
, 773
–791
(2015
).13.
K. M.
Saad
, H. M.
Srivastava
, and D.
Kumar
, “A reliable analytical algorithm for cubic isothermal auto-catalytic chemical system,” in Mathematical Modelling, Applied Analysis and Computation (ICMMAAC 2018), Springer Proceedings in Mathematics and Statistics Vol. 272 (Springer Nature Singapore Private Limited, Singapore, 2019), pp. 243–260.14.
N.
Khodabakhshi
, S. M.
Vaezpour
, and D.
Baleanu
, “Numerical solutions of the initial value problem for fractional differential equations by modification of the Adomian decomposition method
,” Fract. Calc. Appl. Anal.
17
, 382
–400
(2014
).15.
J.-H.
He
, “Variational iteration method for autonomous ordinary differential systems
,” Appl. Math. Comput.
114
(2-3
), 115
–123
(2000
).16.
N.
Bildik
and S.
Deniz
, “New approximate solutions to the nonlinear Klein-Gordon equations using perturbation iteration techniques
,” Discrete Cont. Dyn. Syst. S
13
(3
), 503
–518
(2020
).17.
S.
Deniz
, “Semi-analytical analysis of Allen-Cahn model with a new fractional derivative
,” Math. Methods Appl. Sci.
(published online, 2019
). 18.
X.-C.
Shi
, L.-L.
Huang
, and Y.
Zeng
, “Fast Adomian decomposition method for the Cauchy problem of the time-fractional reaction diffusion equation
,” Adv. Mech. Eng.
8
(2
), 1
–5
(2016
).19.
K. M.
Saad
, E. H. F.
Al-Sharif
, S. M.
Mohamed
, and X.-J.
Yang
, “Optimal -homotopy analysis method for time-space fractional gas dynamics equation
,” Eur. Phys. J. Plus
132
(1
), 1
(2017
). 20.
X.-J.
Yang
, F.
Gao
, and H. M.
Srivastava
, “Exact travelling wave equations for the local fractional two-dimensional Burgers-type equations
,” Comput. Math. Appl.
73
, 203
–210
(2017
). 21.
X.-J.
Yang
, J.
Hristov
, H. M.
Srivastava
, and B.
Ahmad
, “Modelling fractal waves on shallow water surfaces via local fractional Korteweg-de Vries equation
,” Abstr. Appl. Anal.
2014
, 278672
.22.
W. M.
Zhang
, “Solitary solutions and singular periodic solutions of the Drinfeld-Sokolov-Wilson equation by variational approach
,” Appl. Math. Sci.
5
, 1887
–1894
(2011
).23.
V. G.
Drinfeld
and V. V.
Sokolov
, “Equations of Korteweg–de Vries type, and simple Lie algebras
,” Dokl. Akad. Nauk SSSR
258
(1
), 11
–16
(1981
).24.
V. G.
Drinfeld
and V. V.
Sokolov
, “Equations of Korteweg-de Vries type and simple Lie algebras
,” J. Sov. Math.
30
, 1975
–2005
(1985
). 25.
G.
Wilson
, “The affine Lie algebra and an equation of Hirota and Satsuma
,” Phys. Lett. A
89
, 332
–334
(1981
). 26.
G.
Adomian
, “A review of the decomposition method in applied mathematics
,” J. Math. Anal. Appl.
135
, 501
–544
(1988
). 27.
V.
Daftardar-Gejji
and H.
Jafari
, “An iterative method for solving nonlinear functional equations
,” J. Math. Anal. Appl.
316
, 753
–763
(2006
). 28.
G.
Adomian
, Solving Frontier Problems of Physics: The Decomposition Method
(Kluwer Academic Publishers
, Dordrecht
, 1999
).29.
K.
Abbaoui
and Y.
Cherruault
, “Convergence of Adomian’s method applied to differential equations
,” Comput. Math. Appl.
28
(5
), 103
–109
(1994
). 30.
T.
Mavoungou
and Y.
Cherruault
, “Convergence of Adomian’s method and applications to non-linear partial differential equation
,” Kybernetes
21
(6
), 13
–25
(1992
). 31.
S.
Gh. Hosseini
, E.
Babolian
, and S.
Abbasbandy
, “A new algorithm for solving Van der Pol equation based on piecewise spectral Adomian decomposition method
,” Int. J. Ind. Math.
8
, 177
–184
(2016
).32.
A.-M.
Wazwaz
, R.
Rach
, and J.-S.
Duan
, “A study on the systems of the Volterra integral forms of the Lane-Emden equations by the Adomian decomposition method
,” Math. Methods Appl. Sci.
37
, 10
–19
(2014
). 33.
M.
Caputo
, “Linear models of dissipation whose is almost frequency independent. II
,” Geophys. J. R. Astron. Soc.
13
, 529
–539
(1967
). 34.
M.
Caputo
and M.
Fabrizio
, “A new definition of fractional derivative without singular kernel
,” Progr. Fract. Differ. Appl.
1
, 73
–85
(2015
).35.
J. F.
Gómez-Aguilar
, “Irving-Mullineux oscillator via fractional derivatives with Mittag-Leffler kernel
,” Chaos Solitons Fractals
95
, 179
–186
(2017
). 36.
I.
Koca
and A.
Atangana
, “Solutions of Cattaneo-Hristov model of elastic heat diffusion with Caputo-Fabrizio and Atangana-Baleanu fractional derivatives
,” Therm. Sci.
21
, 2299
–2305
(2017
). 37.
A.
Khan
, K. A.
Abro
, A.
Tassaddiq
, and I.
Khan
, “Atangana-Baleanu and Caputo-Fabrizio analysis of fractional derivatives for heat and mass transfer of second grade fluids over a vertical plate: A comparative study
,” Entropy
19
(8
), 279
(2017
).38.
D.
Kumar
, J.
Singh
, D.
Baleanu
, and Sushila
, “Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel
,” Physica A
492
, 155
–167
(2018
). 39.
A.
Fernandez
and D.
Baleanu
, “The mean value theorem and Taylor’s theorem for fractional derivatives with Mittag-Leffler kernel
,” Adv. Differ. Equ.
2018
, 86
. 40.
A.
Fernandez
and D.
Baleanu
, “On some new properties of fractional derivatives with Mittag-Leffler kernel
,” Commun. Nonlinear Sci. Numer. Simul.
59
, 444
–462
(2018
). 41.
A.
Fernandez
, D.
Baleanu
, and H. M.
Srivastava
, “Series representations for fractional-calculus operators involving generalised Mittag-Leffler functions
,” Commun. Nonlinear Sci. Numer. Simul.
67
, 517
–527
(2019
). 42.
A.
Fernandez
, M. A.
Özarslan
, and D.
Baleanu
, “On fractional calculus with general analytic kernels
,” Appl. Math. Comput.
354
, 248
–265
(2019
). 43.
H. M.
Srivastava
and K. M.
Saad
, “Some new models of the time-fractional gas dynamics equation
,” Adv. Math. Model. Appl.
3
(1
), 5
–17
(2018
).44.
J.
Losada
and J. J.
Nieto
, “Properties of a new fractional derivative without singular kernel
,” Progr. Fract. Differ. Appl.
1
, 87
–92
(2015
).45.
A.
Atangana
and D.
Baleanu
, “New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model
,” Therm. Sci.
20
, 763
–769
(2016
). 46.
H. M.
Srivastava
, K. M.
Saad
, and E. H. F.
Al-Sharif
, “A new analysis of the time-fractional and space-time fractional-order Nagumo equation
,” J. Inf. Math. Sci.
10
, 545
–561
(2018
).47.
H. M.
Srivastava
and K. M.
Saad
, “New approximate solution of the time-fractional Nagumo equation involving fractional integrals without singular kernel
,” Appl. Math. Inf. Sci.
14
, 1
–8
(2020
). 48.
B.
Ahmad
, M.
Alghanmi
, A.
Alsaedi
, H. M.
Srivastava
, and S. K.
Ntouyas
, “The Langevin equation in terms of generalized Liouville-Caputo derivatives with nonlocal boundary conditions involving a generalized fractional integral
,” Mathematics
7
, 533
(2019
). 49.
H. M.
Srivastava
, R. S.
Dubey
, and M.
Jain
, “A study of the fractional-order mathematical model of diabetes and its resulting complications
,” Math. Methods Appl. Sci.
42
, 4570
–4583
(2019
). 50.
K. M.
Saad
, H. M.
Srivastava
, and J. F.
Gómez-Aguilar
, “A fractional quadratic autocatalysis associated with chemical clock reactions involving linear inhibition
,” Chaos Solitons Fractals
132
, 109557
(2020
). 51.
H.
Singh
and H. M.
Srivastava
, “Jacobi collocation method for the approximate solution of some fractional-order Riccati differential equations with variable coefficients
,” Physica A
523
, 1130
–1149
(2019
). © 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.

