We study active matter systems where the orientational dynamics of underlying self-propelled particles obey second-order equations. By primarily concentrating on a spatially homogeneous setup for particle distribution, our analysis combines theories of active matter and oscillatory networks. For such systems, we analyze the appearance of solitary states via a homoclinic bifurcation as a mechanism of the frequency clustering. By introducing noise, we establish a stochastic version of solitary states and derive the mean-field limit described by a partial differential equation for a one-particle probability density function, which one might call the continuum Kuramoto model with inertia and noise. By studying this limit, we establish second-order phase transitions between polar order and disorder. The combination of both analytical and numerical approaches in our study demonstrates an excellent qualitative agreement between mean-field and finite-size models.

1.
T.
Vicsek
and
A.
Zafeiris
, “
Collective motion
,”
Phys. Rep.
517
,
71
140
(
2012
).
2.
G.
Gompper
,
R. G.
Winkler
,
T.
Speck
,
A.
Solon
,
C.
Nardini
,
F.
Peruani
,
H.
Löwen
,
R.
Golestanian
,
U. B.
Kaupp
,
L.
Alvarez
,
T.
Kiørboe
,
E.
Lauga
,
W. C. K.
Poon
,
A.
DeSimone
,
S.
Muiños-Landin
,
A.
Fischer
,
N. A.
Söker
,
F.
Cichos
,
R.
Kapral
,
P.
Gaspard
,
M.
Ripoll
,
F.
Sagues
,
A.
Doostmohammadi
,
J. M.
Yeomans
,
I. S.
Aranson
,
C.
Bechinger
,
H.
Stark
,
C. K.
Hemelrijk
,
F. J.
Nedelec
,
T.
Sarkar
,
T.
Aryaksama
,
M.
Lacroix
,
G.
Duclos
,
V.
Yashunsky
,
P.
Silberzan
,
M.
Arroyo
, and
S.
Kale
, “
The 2020 motile active matter roadmap
,”
J. Phys. Condens. Matter
32
,
193001
(
2020
).
3.
T.
Vicsek
,
A.
Czirók
,
E.
Ben-Jacob
,
I.
Cohen
, and
O.
Shochet
, “
Novel type of phase transition in a system of self-driven particles
,”
Phys. Rev. Lett.
75
,
1226
1229
(
1995
).
4.
P.
Degond
and
S.
Motsch
, “
Continuum limit of self-driven particles with orientation interaction
,”
Math. Models Methods Appl. Sci.
18
,
1193
1215
(
2008
).
5.
Y.
Kuramoto
, in Chemical Oscillations, Waves, and Turbulence, Springer Series in Synergetics (Springer, Berlin, 1984).
6.
C.
Chen
,
S.
Liu
,
X.-Q.
Shi
,
H.
Chaté
, and
Y.
Wu
, “
Weak synchronization and large-scale collective oscillation in dense bacterial suspensions
,”
Nature
542
,
210
(
2017
).
7.
See https://www.youtube.com/playlist?list=PLjL7stT6PH4z3MFm3uyJFBfduO_yqHLbx for movies of self-propelled particle motion in solitary states and mean-field dynamics of oscillatory population.
8.
Y.
Kuramoto
and
D.
Battogtokh
, “
Coexistence of coherence and incoherence in nonlocally coupled phase oscillators
,”
Nonlinear Phenom. Complex Syst.
5
,
380
385
(
2002
).
9.
D. M.
Abrams
and
S. H.
Strogatz
, “
Chimera states for coupled oscillators
,”
Phys. Rev. Lett.
93
,
174102
(
2004
).
10.
M. J.
Panaggio
and
D. M.
Abrams
, “
Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators
,”
Nonlinearity
28
,
R67
R87
(
2015
).
11.
E.
Schöll
, “
Synchronization patterns and chimera states in complex networks: Interplay of topology and dynamics
,”
Eur. Phys. J. Spec. Top.
225
,
891
919
(
2016
).
12.
O. E.
Omel’chenko
and
E.
Knobloch
, “
Chimerapedia: Coherence–incoherence patterns in one, two and three dimensions
,”
New J. Phys.
21
,
093034
(
2019
).
13.
N.
Kruk
,
Y.
Maistrenko
, and
H.
Koeppl
, “
Self-propelled chimeras
,”
Phys. Rev. E
98
,
032219
(
2018
).
14.
Y.
Maistrenko
,
B.
Penkovsky
, and
M.
Rosenblum
, “
Solitary state at the edge of synchrony in ensembles with attractive and repulsive interactions
,”
Phys. Rev. E
89
,
060901
(
2014
).
15.
P.
Jaros
,
Y.
Maistrenko
, and
T.
Kapitaniak
, “
Chimera states on the route from coherence to rotating waves
,”
Phys. Rev. E
91
,
022907
(
2015
).
16.
P.
Jaros
,
S.
Brezetsky
,
R.
Levchenko
,
D.
Dudkowski
,
T.
Kapitaniak
, and
Y.
Maistrenko
, “
Solitary states for coupled oscillators with inertia
,”
Chaos
28
,
011103
(
2018
).
17.
P.
Ashwin
and
O.
Burylko
, “
Weak chimeras in minimal networks of coupled phase oscillators
,”
Chaos
25
,
013106
(
2015
).
18.
T.
Kapitaniak
,
P.
Kuzma
,
J.
Wojewoda
,
K.
Czolczynski
, and
Y.
Maistrenko
, “
Imperfect chimera states for coupled pendula
,”
Sci. Rep.
4
,
6379
(
2014
).
19.
H.
Taher
,
S.
Olmi
, and
E.
Schöll
, “
Enhancing power grid synchronization and stability through time-delayed feedback control
,”
Phys. Rev. E
100
,
062306
(
2019
).
20.
F.
Hellmann
,
P.
Schultz
,
P.
Jaros
,
R.
Levchenko
,
T.
Kapitaniak
,
J.
Kurths
, and
Y.
Maistrenko
, “
Network-induced multistability through lossy coupling and exotic solitary states
,”
Nat. Commun.
11
,
592
(
2020
).
21.
R.
Berner
,
A.
Polanska
,
E.
Schöll
, and
S.
Yanchuk
, “Solitary states in adaptive nonlocal oscillator networks,” arXiv:1911.00320 [nlin.PS] (2019).
22.
J. A.
Cañizo
,
J. A.
Carrillo
, and
J.
Rosado
, “
A well-posedness theory in measures for some kinetic models of collective motion
,”
Math. Models Methods Appl. Sci.
21
,
515
539
(
2011
).
23.
J.
Carrillo
,
Y.-P.
Choi
,
S.-Y.
Ha
,
M.-J.
Kang
, and
Y.
Kim
, “
Contractivity of transport distances for the kinetic Kuramoto equation
,”
J. Stat. Phys.
156
,
395
415
(
2014
).
24.
C.
Lancellotti
, “
On the Vlasov limit for systems of nonlinearly coupled oscillators without noise
,”
Transp. Theor. Stat. Phys.
34
,
523
535
(
2005
).
25.
H.
Neunzert
, “An introduction to the nonlinear Boltzmann–Vlasov equation,” in Kinetic Theories and the Boltzmann Equation, edited by C. Cercignani (Springer, Berlin, 1984), pp. 60–110.
26.
C.
Kipnis
and
C.
Landim
, Scaling Limits of Interacting Particle Systems, Grundlehren der mathematischen Wissenschaften (Springer, Berlin, 1998).
27.
H.
Risken
and
T.
Frank
, The Fokker–Planck Equation: Methods of Solution and Applications, Springer Series in Synergetics (Springer, Berlin, 1996).
28.
A. J.
Archer
and
M.
Rauscher
, “
Dynamical density functional theory for interacting Brownian particles: Stochastic or deterministic?
,”
J. Phys. A Math. Gen.
37
,
9325
9333
(
2004
).
29.
N.
Kruk
,
J. A.
Carrillo
, and
H.
Koeppl
, “A finite volume method for continuum limit equations of nonlocally interacting active chiral particles,” arXiv:2008.08493 [math.NA] (2020).
30.
N.
Kruk
,
J. A.
Carrillo
, and
H.
Koeppl
, “
Traveling bands, clouds, and vortices of chiral active matter
,”
Phys. Rev. E
102
,
022604
(
2020
).
31.
J. A.
Carrillo
,
Y.-P.
Choi
, and
L.
Pareschi
, “
Structure preserving schemes for the continuum Kuramoto model: Phase transitions
,”
J. Comput. Phys.
376
,
365
389
(
2019
).
32.
H.-A.
Tanaka
,
A. J.
Lichtenberg
, and
S.
Oishi
, “
First order phase transition resulting from finite inertia in coupled oscillator systems
,”
Phys. Rev. Lett.
78
,
2104
2107
(
1997
).
33.
H.-A.
Tanaka
,
A. J.
Lichtenberg
, and
S.
Oishi
, “
Self-synchronization of coupled oscillators with hysteretic responses
,”
Physica D
100
,
279
300
(
1997
).
34.
S.
Olmi
,
A.
Navas
,
S.
Boccaletti
, and
A.
Torcini
, “
Hysteretic transitions in the Kuramoto model with inertia
,”
Phys. Rev. E
90
,
042905
(
2014
).
35.
V. O.
Munyaev
,
L. A.
Smirnov
,
V. A.
Kostin
,
G. V.
Osipov
, and
A.
Pikovsky
, “
Analytical approach to synchronous states of globally coupled noisy rotators
,”
New J. Phys.
22
,
023036
(
2020
).

Supplementary Material

You do not currently have access to this content.