The problem of distinguishing deterministic chaos from non-chaotic dynamics has been an area of active research in time series analysis. Since noise contamination is unavoidable, it renders deterministic chaotic dynamics corrupted by noise to appear in close resemblance to stochastic dynamics. As a result, the problem of distinguishing noise-corrupted chaotic dynamics from randomness based on observations without access to the measurements of the state variables is difficult. We propose a new angle to tackle this problem by formulating it as a multi-class classification task. The task of classification involves allocating the observations/measurements to the unknown state variables in order to find the nature of these unobserved internal state variables. We employ signal and image processing based methods to characterize the different system dynamics. A deep learning technique using a state-of-the-art image classifier known as the Convolutional Neural Network (CNN) is designed to learn the dynamics. The time series are transformed into textured images of spectrogram and unthresholded recurrence plot (UTRP) for learning stochastic and deterministic chaotic dynamical systems in noise. We have designed a CNN that learns the dynamics of systems from the joint representation of the textured patterns from these images, thereby solving the problem as a pattern recognition task. The robustness and scalability of our approach is evaluated at different noise levels. Our approach demonstrates the advantage of applying the dynamical properties of chaotic systems in the form of joint representation of UTRP images along with spectrogram to improve learning dynamical systems in colored noise.

1.
H.
Broer
,
F.
Takens
, and
B.
Hasselblatt
,
Handbook of Dynamical Systems
(
Elsevier
,
2010
).
2.
V.
Plakandaras
,
R.
Gupta
,
L. A.
Gil-Alana
, and
M. E.
Wohar
, “
Are BRICS exchange rates chaotic?
,”
Appl. Econ. Lett.
26
,
1104
1110
(
2019
).
3.
D.
Rickles
,
P.
Hawe
, and
A.
Shiell
, “
A simple guide to chaos and complexity
,”
J. Epidemiol. Community Health
61
,
933
937
(
2007
).
4.
A. D.
Whalen
,
Detection of Signals in Noise
(
Academic Press
,
2013
).
5.
V.
Kaitala
,
J.
Ylikarjula
,
E.
Ranta
, and
P.
Lundberg
, “
Population dynamics and the colour of environmental noise
,”
Proc. R. Soc. London Ser. B
264
,
943
948
(
1997
).
6.
S.
Guan
,
Y.-C.
Lai
, and
C.-H.
Lai
, “
Effect of noise on generalized chaotic synchronization
,”
Phys. Rev. E
73
,
046210
(
2006
).
7.
G.
Sugihara
and
R. M.
May
, “
Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series
,”
Nature
344
,
734
741
(
1990
).
8.
E.
Bradley
and
H.
Kantz
, “
Nonlinear time-series analysis revisited
,”
Chaos
25
,
097610
(
2015
).
9.
A.
Wolf
, “
Quantifying Chaos with Lyapunov Exponents
,” in
Nonlinear Science: Theory and Applications
, edited by V. Holden (
Manchester University Press, Manchester
,
1986
), pp.
273
290
.
10.
L.
Zunino
,
M. C.
Soriano
, and
O. A.
Rosso
, “
Distinguishing chaotic and stochastic dynamics from time series by using a multiscale symbolic approach
,”
Phys. Rev. E
86
,
046210
(
2012
).
11.
L.
Lacasa
and
R.
Toral
, “
Description of stochastic and chaotic series using visibility graphs
,”
Phys. Rev. E
82
,
036120
(
2010
).
12.
W.
Brock
,
W. D.
Dechert
,
J. A.
Scheinkman
, and
B.
Lebaron
, “
A test for independence based on the correlation dimension
,”
Econom. Rev.
15
,
197
235
(
1996
).
13.
M. G.
Ravetti
,
L. C.
Carpi
,
B. A.
Gonçalves
,
A. C.
Frery
, and
O. A.
Rosso
, “
Distinguishing noise from chaos: Objective versus subjective criteria using horizontal visibility graph
,”
PLoS One
9
,
1
15
(
2014
).
14.
M.
Cencini
,
M.
Falcioni
,
E.
Olbrich
,
H.
Kantz
, and
A.
Vulpiani
, “
Chaos or noise: Difficulties of a distinction
,”
Phys. Rev. E
62
,
427
437
(
2000
).
15.
C.-S.
Poon
and
M.
Barahona
, “
Titration of chaos with added noise
,”
Proc. Natl. Acad. Sci. U.S.A.
98
,
7107
7112
(
2001
).
16.
J.
Gao
,
J.
Hu
,
W.
Tung
, and
Y.
Cao
, “
Distinguishing chaos from noise by scale-dependent Lyapunov exponent
,”
Phys. Rev. E
74
,
066204
(
2006
).
17.
D.
Wendi
and
N.
Marwan
, “
Extended recurrence plot and quantification for noisy continuous dynamical systems
,”
Chaos
28
,
085722
(
2018
).
18.
N.
Marwan
,
C. L.
Webber
,
E. E. N.
Macau
, and
R. L.
Viana
, “
Introduction to focus issue: Recurrence quantification analysis for understanding complex systems
,”
Chaos
28
,
085601
(
2018
).
19.
A.
Bensaïda
and
H.
Litimi
, “
High level chaos in the exchange and index markets
,”
Chaos Soliton. Fract.
54
,
90
95
(
2013
).
20.
L.
Stone
, “
Coloured noise or low-dimensional chaos?
,”
Proc. R. Soc. London Ser. B
250
,
77
81
(
1992
).
21.
T.
Weng
,
H.
Yang
,
C.
Gu
,
J.
Zhang
, and
M.
Small
, “
Synchronization of chaotic systems and their machine-learning models
,”
Phys. Rev. E
99
,
042203
(
2019
).
22.
C.
Li
and
J.-W.
Hu
, “
A new Arima-based neuro-fuzzy approach and swarm intelligence for time series forecasting
,”
Eng. Appl. Artif. Intell.
25
,
295
308
(
2012
).
23.
W.
Ma
,
J.
Duan
,
W.
Man
,
H.
Zhao
, and
B.
Chen
, “
Robust kernel adaptive filters based on mean p-power error for noisy chaotic time series prediction
,”
Eng. Appl. Artif. Intell.
58
,
101
110
(
2017
).
24.
M.
Faggini
, “
Chaotic time series analysis in economics: Balance and perspectives
,”
Chaos
24
,
042101
(
2014
).
25.
A. V.
Makarenko
, “Deep convolutional neural networks for chaos identification in signal processing,” in
2018 26th European Signal Processing Conference (EUSIPCO)
(IEEE, Rome, 2018), pp. 1467–1471.
26.
J.
Pathak
,
Z.
Lu
,
B. R.
Hunt
,
M.
Girvan
, and
E.
Ott
, “
Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data
,”
Chaos
27
,
121102
(
2017
).
27.
J.
Pathak
,
B.
Hunt
,
M.
Girvan
,
Z.
Lu
, and
E.
Ott
, “
Model-free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach
,”
Phys. Rev. Lett.
120
,
024102
(
2018
).
28.
J.
Gu
,
Z.
Wang
,
J.
Kuen
,
L.
Ma
,
A.
Shahroudy
,
B.
Shuai
,
T.
Liu
,
X.
Wang
,
G.
Wang
,
J.
Cai
et al., “
Recent advances in convolutional neural networks
,”
Pattern Recognit.
77
,
354
377
(
2018
).
29.
Y.
LeCun
,
Y.
Bengio
, and
G.
Hinton
, “
Deep learning
,”
Nature
521
,
436
(
2015
).
30.
B.
Zhao
,
H.
Lu
,
S.
Chen
,
J.
Liu
, and
D.
Wu
, “
Convolutional neural networks for time series classification
,”
J. Syst. Eng. Electron.
28
,
162
169
(
2017
).
31.
M.
Broy
, “Challenges in modeling cyber-physical systems,” in Proceedings of the 12th International Conference on Information Processing in Sensor Networks, IPSN’13 (Association for Computing Machinery, New York, NY, 2013), pp. 5–6.
32.
E. A.
Lee
, “
Fundamental limits of cyber-physical systems modeling
,”
ACM Trans. Cyber-Phys. Syst.
1
(1),
3
(
2017
).
33.
Y.
Xia
,
M.
Small
, and
J.
Wu
, “
Introduction to focus issue: Complex network approaches to cyber-physical systems
,”
Chaos
29
,
093123
(
2019
).
34.
L.
Liu
,
S.
Zhao
,
Z.
Yu
, and
H.
Dai
, “
A big data inspired chaotic solution for fuzzy feedback linearization model in cyber-physical systems
,”
Ad Hoc Netw.
35
,
97
104
(
2015
).
35.
M.
Zimmerling
,
L.
Mottola
,
P.
Kumar
,
F.
Ferrari
, and
L.
Thiele
, “
Adaptive real-time communication for wireless cyber-physical systems
,”
ACM Trans. Cyber-Phys. Syst.
1
,
8
(
2017
).
36.
C. P.
Silva
and
A. M.
Young
, “Introduction to chaos-based communications and signal processing,” in 2000 IEEE Aerospace Conference Proceedings (Cat. No. 00TH8484) (IEEE, 2000), Vol. 1, pp. 279–299.
37.
S.
Mukhopadhyay
,
M.
Mitra
, and
S.
Banerjee
, “Chaos synchronization with genetic engineering algorithm for secure communications,” in Chaos Synchronization and Cryptography for Secure Communications: Applications for Encryption (IGI Global, 2011), pp. 476–509.
38.
S.
Banerjee
,
S.
Mukhopadhyay
, and
L.
Rondoni
, “
Multi-image encryption based on synchronization of chaotic lasers and iris authentication
,”
Opt. Lasers Eng.
50
,
950
957
(
2012
).
39.
M.
Wang
,
X.
Wang
,
Z.
Liu
, and
H.
Zhang
, “
The least channel capacity for chaos synchronization
,”
Chaos
21
,
013107
(
2011
).
40.
J.
Castro-Ramírez
,
R.
Martínez-Guerra
, and
J. C.
Cruz-Victoria
, “
A new reduced-order observer for the synchronization of nonlinear chaotic systems: An application to secure communications
,”
Chaos
25
,
103128
(
2015
).
41.
H.-P.
Ren
,
C.
Bai
,
J.
Liu
,
M. S.
Baptista
, and
C.
Grebogi
, “
Experimental validation of wireless communication with chaos
,”
Chaos
26
,
083117
(
2016
).
42.
S.
Mukhopadhyay
and
H.
Leung
, “Cluster synchronization of predator prey robots,” in 2013 IEEE International Conference on Systems, Man, and Cybernetics (IEEE, 2013), pp. 2753–2758.
43.
P.
Arena
,
S.
De Fiore
,
L.
Fortuna
, and
L.
Patané
, “
Perception-action map learning in controlled multiscroll systems applied to robot navigation
,”
Chaos
18
,
043119
(
2008
).
44.
S.
Mukhopadhyay
and
H.
Leung
, “Dynamical systems approach for predator–prey robot behavior control via symbolic dynamics based communication,” in Encyclopedia of Information Science and Technology, 3rd ed. (IGI Global, 2015), pp. 6621–6632.
45.
C.
Deb
,
F.
Zhang
,
J.
Yang
,
S. E.
Lee
, and
K. W.
Shah
, “
A review on time series forecasting techniques for building energy consumption
,”
Renewable Sustainable Energy Rev.
74
,
902
924
(
2017
).
46.
S.
Mukhopadhyay
and
S.
Banerjee
, “
Global optimization of an optical chaotic system by chaotic multi swarm particle swarm optimization
,”
Expert Syst. Appl.
39
,
917
924
(
2012
).
47.
Z.
Lu
,
B. R.
Hunt
, and
E.
Ott
, “
Attractor reconstruction by machine learning
,”
Chaos
28
,
061104
(
2018
).
48.
O.
Abdel-Hamid
,
A.-R.
Mohamed
,
H.
Jiang
,
L.
Deng
,
G.
Penn
, and
D.
Yu
, “
Convolutional neural networks for speech recognition
,”
IEEE/ACM Trans. Audio Speech Lang. Process.
22
,
1533
1545
(
2014
).
49.
N.
Hatami
,
Y.
Gavet
, and
J.
Debayle
, “Classification of time-series images using deep convolutional neural networks,” in Tenth International Conference on Machine Vision (ICMV 2017) (International Society for Optics and Photonics, 2018), Vol. 10696, p. 106960Y.
50.
Z.
Wang
and
T.
Oates
, “Encoding time series as images for visual inspection and classification using tiled convolutional neural networks,” in Proceedings of the Workshops at AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019 (University of Maryland Baltimore County, 2015) pp. 40–46.
51.
R.
Bakker
,
J. C.
Schouten
,
C. L.
Giles
,
F.
Takens
, and
C. M.
Van Den Bleek
, “
Learning chaotic attractors by neural networks
,”
Neural Comput.
12
,
2355
2383
(
2000
).
52.
Z.
Lu
,
J.
Pathak
,
B.
Hunt
,
M.
Girvan
,
R.
Brockett
, and
E.
Ott
, “
Reservoir observers: Model-free inference of unmeasured variables in chaotic systems
,”
Chaos
27
,
041102
(
2017
).
53.
R.
Yu
,
S.
Zheng
, and
Y.
Liu
, “Learning chaotic dynamics using tensor recurrent neural networks,” in Proceedings of the ICML 17 workshop on deep structured prediction, Sydney, Australia (Proceedings of Machine Learning Research, 2017), Vol. 70.
54.
H.
Fan
,
J.
Jiang
,
C.
Zhang
,
X.
Wang
, and
Y.-C.
Lai
, “
Long-term prediction of chaotic systems with machine learning
,”
Phys. Rev. Res.
2
,
012080
(
2020
).
55.
H. I.
Fawaz
,
G.
Forestier
,
J.
Weber
,
L.
Idoumghar
, and
P.-A.
Muller
, “
Deep learning for time series classification: A review
,”
Data Min. Knowl. Discov.
33
,
917
963
(
2019
).
56.
F.
Takens
, “Detecting strange attractors in turbulence,” in Dynamical Systems and Turbulence, Warwick 1980 (Springer, 1981), pp. 366–381.
57.
H.
Yang
, “
Multiscale recurrence quantification analysis of spatial cardiac vectorcardiogram signals
,”
IEEE Trans. Biomed. Eng.
58
,
339
347
(
2011
).
58.
A.
Shrestha
and
A.
Mahmood
, “
Review of deep learning algorithms and architectures
,”
IEEE Access
7
,
53040
53065
(
2019
).
59.
M. C.
Mackey
and
L.
Glass
, “
Oscillation and chaos in physiological control systems
,”
Science
197
,
287
289
(
1977
).
60.
A.
Goergen
and
T.
Vialar
,
Complex and Chaotic Nonlinear Dynamics: Advances in Economics and Finance, Mathematics and Statistics
(Springer-Verlag Berlin Heidelberg, 2009).
61.
J. S.
Iwanski
and
E.
Bradley
, “
Recurrence plots of experimental data: To embed or not to embed?
,”
Chaos
8
,
861
871
(
1998
).
62.
N. J.
Kasdin
, “
Discrete simulation of colored noise and stochastic processes and 1/fα law noise generation
,”
Proc. IEEE
83
,
802
827
(
1995
).
You do not currently have access to this content.