In this paper, the amplitude and the length of the business cycle are investigated. It is the first time the length of the business cycle based on the Goodwin model (one classical business cycle model) is discussed. The effect of the time delay of the economic policy and consumption on the amplitude and the length of the business cycle is studied. Meanwhile, the memory property of making economic policy is also considered. The theoretical amplitude of the business cycle is obtained by multiple-scale methods. The transitions of the amplitude induced by memory property and time delay are analyzed. How the economic parameter and random excitation affect the length of the business cycle is proposed. Based on the results, we can find that the time delay of both economic policy and consumption can induce the transitions. Moreover, the memory property of economic policy will change the critical value of the parameters when the transitions occur. In one typical induced investment function, the length of the business cycle is determined only by the autonomous investment and consumption. However, the length of the business cycle is not mainly affected by the autonomous investment and consumption in some other typical induced investment function. This states that the type of induced investment function has a very important role in determining the length of the business cycle.

1.
R. M.
Goodwin
, “
The nonlinear accelerator and the persistence of business cycles
,”
Econometrica
19
,
1
17
(
1951
).
2.
S.
Li
,
Q.
Li
,
J.
Li
, and
J.
Feng
, “
Chaos prediction and control of Goodwin’s nonlinear accelerator model
,”
Nonlinear Anal.
12
(
4
),
1950
1960
(
2011
).
3.
T.
Puu
and
I.
Sushko
, “
A business cycle model with cubic nonlinearity
,”
Chaos Soliton. Fract.
19
,
597
612
(
2004
).
4.
H.
Yoshida
and
T.
Asada
, “
Dynamic analysis of policy lag in a Keynes–Goodwin model: Stability, instability, cycles and chaos
,”
J. Econ. Behav. Organ.
62
,
441
469
(
2007
).
5.
R.
Bagley
and
P.
Torvik
, “
A theoretical basis for the application of fractional calculus to viscoelasticity
,”
J. Rheol.
27
(
3
),
201
210
(
1983
).
6.
R.
Bagley
and
P.
Torvik
, “
On the fractional calculus model of viscoelastic behavior
,”
J. Rheol.
30
(
1
),
133
155
(
1986
).
7.
Z.
Lin
,
J.
Li
, and
S.
Li
, “
On a business cycle model with fractional derivative under narrow-band random excitation
,”
Chaos Soliton. Fract.
87
,
61
70
(
2016
).
8.
Z.
Lin
,
W.
Xu
,
J.
Li
,
W.
Jia
, and
S.
Li
, “
Study on the business cycle model with fractional-order time delay under random excitation
,”
Entropy
19
(
7
),
354
(
2017
).
9.
N.
Sebaa
,
Z.
Fellah
,
W.
Lauriks
, and
C.
Depollier
, “
Application of fractional calculus to ultrasonic wave propagation in human cancellous bone
,”
Signal Process.
86
(
10
),
2668
2677
(
2006
).
10.
N.
Laskin
, “
Fractional market dynamics
,”
Physica A
287
(
3–4
),
482
492
(
2000
).
11.
Y.
Xie
,
Y.
Kang
,
Y.
Liu
, and
Y.
Wu
, “
Firing properties and synchronization rate in fractional-order Hindmarsh–Rose model neurons
,”
Sci. China Technol. Sci.
57
(
5
),
914
922
(
2014
).
12.
C.
Li
and
W.
Deng
, “
Remarks on fractional derivatives
,”
Appl. Math. Comput.
187
(
2
),
777
784
(
2007
).
13.
Y.
Rossikhin
and
M.
Shitikova
, “
Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids
,”
Appl. Mech. Rev.
50
(
1
),
15
67
(
1997
).
14.
Y.
Rossikhin
and
M.
Shitikova
, “
Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results
,”
Appl. Mech. Rev.
63
(
1
),
010801
(
2010
).
15.
Y.
Shen
,
S.
Yang
,
H.
Xing
, and
H.
Ma
, “
Primary resonance of Duffing oscillator with two kinds of fractional-order derivatives
,”
Int. J. Non-Linear Mech.
47
(
9
),
975
983
(
2012
).
16.
Y.
Shen
,
S.
Yang
, and
H.
Xing
, “
Dynamical analysis of linear SDOF oscillator with fractional-order derivative (II)
,”
Acta Phys. Sinica
61
(
15
),
150503
(
2012
).
17.
W.
Peng
,
Y.
Shen
, and
S.
Yang
, “
Super-harmonic resonance of fractional-order van der Pol oscillator
,”
Acta Phys. Sinica
63
(
1
),
247
254
(
2014
).
18.
Y.
Shen
,
S.
Yang
, and
C.
Sui
, “
Analysis on limit cycle of fractional-order van der Pol oscillator
,”
Chaos Soliton Fract.
67
(
10
),
94
102
(
2014
).
19.
S.
Wen
,
Y.
Shen
,
X.
Li
, and
S.
Yang
, “
Dynamical analysis of Mathieu equation with two kinds of van der Pol fractional-order terms
,”
Int. J. Non-Linear Mech.
84
,
130
138
(
2016
).
20.
C.
Li
and
W.
Ma
, “
Synchronizations in fractional complex networks
,” in
Applications in Control
,
Handbook of Fractional Calculus with Applications
, Vol.
6
(
De Gruyter
,
2019
), pp.
379
396
.
21.
W.
Deng
, “
Numerical algorithm for the time fractional Fokker-Planck equation
,”
J. Comput. Phys.
227
(
2
),
1510
1522
(
2007
).
22.
Z.
Huang
and
X.
Jin
, “
Response and stability of a SDOF strongly nonlinear stochastic system with light damping modeled by a fractional derivative
,”
J. Sound Vib.
319
(
3
),
1121
1135
(
2009
).
23.
L.
Chen
and
W.
Zhu
, “
First passage failure of SDOF nonlinear oscillator with lightly fractional derivative damping under real noise excitations
,”
Probab. Eng. Mech.
26
(
2
),
208
214
(
2011
).
24.
L.
Chen
and
W.
Zhu
, “
Stochastic jump and bifurcation of Duffing oscillator with fractional derivative damping under combined harmonic and white noise excitations
,”
Int. J. Non-Linear Mech.
46
(
10
),
1324
1329
(
2011
).
25.
L.
Chen
,
Q.
Zhuang
, and
W.
Zhu
, “
First passage failure of MDOF quasi-integrable Hamiltonian systems with fractional derivative damping
,”
Acta Mech.
222
(
3–4
),
245
260
(
2011
).
26.
L.
Chen
,
Q.
Lou
,
Q.
Zhuang
, and
W.
Zhu
, “
A bounded optimal control for maximizing the reliability of randomly excited nonlinear oscillators with fractional derivative damping
,”
Acta Mechanica
223
(
12
),
2703
2721
(
2012
).
27.
L.
Chen
,
Q.
Lou
,
Z.
Li
, and
W.
Zhu
, “
Stochastic stability of the harmonically and randomly excited Duffing oscillator with damping modeled by a fractional derivative
,”
Sci. China Phys. Mech. Astron.
55
(
12
),
2284
2289
(
2012
).
28.
L.
Chen
,
H.
Wang
,
Z.
Li
, and
W.
Zhu
, “
Stationary response of Duffing oscillator with hardening stiffness and fractional derivative
,”
Int. J. Non-Linear Mech.
48
,
44
50
(
2013
).
29.
L.
Chen
,
F.
Hu
, and
W.
Zhu
, “
Stochastic dynamics and fractional optimal control of quasi-integrable Hamiltonian systems with fractional derivative damping
,”
Frac. Calculus Appl. Anal.
16
(
1
),
189
225
(
2013
).
30.
L.
Chen
,
H.
Li
,
Z.
Li
, and
W.
Zhu
, “
Asymptotic stability with probability one of MDOF nonlinear oscillators with fractional derivative damping
,”
Sci. China Phys. Mech. Astron.
56
(
11
),
2200
2207
(
2013
).
31.
L.
Chen
,
T.
Zhao
,
W.
Li
, and
J.
Zhao
, “
Bifurcation control of bounded noise excited Duffing oscillator by a weakly fractional-order PIλDμ feedback controller
,”
Nonlinear Dyn.
83
(
1–2
),
529
539
(
2016
).
32.
W.
Li
,
L.
Chen
,
J.
Zhao
, and
N.
Trisovic
, “
Reliability estimation of stochastic dynamical systems with fractional order PID controller
,”
Int. J. Struct. Stab. Dyn.
18
(
6
),
1850083
(
2018
).
33.
W.
Li
,
L.
Chen
,
N.
Trisovic
,
A.
Cvetkovic
, and
J.
Zhao
, “
First passage of stochastic fractional derivative systems with power-form restoring force
,”
Int. J. Non-Linear Mech.
71
,
83
88
(
2015
).
34.
W.
Liu
,
W.
Zhu
, and
L.
Chen
, “
Stochastic stability of Duffing oscillator with fractional derivative damping under combined harmonic and Poisson white noise parametric excitations
,”
Probab. Eng. Mech.
53
,
109
115
(
2018
).
35.
Y.
Xu
,
Y.
Li
,
D.
Liu
,
W.
Jia
, and
H.
Huang
, “
Responses of Duffing oscillator with fractional damping and random phase
,”
Nonlinear Dyn.
74
(
3
),
745
753
(
2013
).
36.
Y.
Xu
,
Y.
Li
, and
D.
Liu
, “
A method to stochastic dynamical systems with strong nonlinearity and fractional damping
,”
Nonlinear Dyn.
83
(
4
),
2311
2321
(
2016
).
37.
Y.
Xu
,
Y.
Li
, and
D.
Liu
, “
Response of fractional oscillators with viscoelastic term under random excitation
,”
J. Comput. Nonlinear Dyn.
9
(
3
),
031015
(
2014
).
38.
D.
Liu
,
J.
Li
, and
Y.
Xu
, “
Principal resonance responses of SDOF systems with small fractional derivative damping under narrow-band random parametric excitation
,”
Commun. Nonlinear Sci. Numer. Simul.
19
(
10
),
3642
3652
(
2014
).
39.
Y.
Yang
,
W.
Xu
, and
G.
Yang
, “
Bifurcation analysis of a noisy vibro-impact oscillator with two kinds of fractional derivative elements
,”
Chaos
28
(
4
),
043106
(
2018
).
40.
Y.
Yang
,
W.
Xu
,
Y.
Sun
, and
Y.
Xiao
, “
Stochastic bifurcations in the nonlinear vibroimpact system with fractional derivative under random excitation
,”
Commun. Nonlinear Sci. Numer. Simul.
42
,
62
72
(
2017
).
41.
W.
Deng
and
C.
Li
, “
Stability analysis of linear fractional differential system with multiple time delays
,”
Nonlinear Dyn.
48
(
4
),
409
416
(
2007
).
42.
W.
Ma
,
C.
Li
,
Y.
Wu
, and
Y.
Wu
, “
Adaptive synchronization of fractional neural networks with unknown parameters and time delays
,”
Entropy
16
(
12
),
6286
6299
(
2014
).
43.
J.
Niu
,
Y.
Shen
,
S.
Yang
, and
S.
Li
, “
Analysis of Duffing oscillator with time-delayed fractional-order PID controller
,”
Int. J. Non-Linear Mech.
92
,
66
75
(
2017
).
44.
A.
Leung
,
Z.
Guo
, and
H.
Yang
, “
Fractional derivative and time delay damper characteristics in Duffing–van der Pol oscillators
,”
Commun. Nonlinear Sci. Numer. Simul.
18
(
10
),
2900
2915
(
2013
).
45.
A.
Matsumoto
,
U.
Merlone
, and
F.
Szidarovszky
, “
Goodwin accelerator model revisited with fixed time delays
,”
Commun. Nonlinear Sci. Numer. Simul.
58
,
233
248
(
2018
).
46.
D.
Fadime
, “
Multiple time scales solution of an equation with quadratic and cubic nonlinearities having fractional-order derivative
,”
Math. Comput. Appl.
16
(
1
),
301
308
(
2011
).
You do not currently have access to this content.