Given the complex temporal evolution of epileptic seizures, understanding their dynamic nature might be beneficial for clinical diagnosis and treatment. Yet, the mechanisms behind, for instance, the onset of seizures are still unknown. According to an existing classification, two basic types of dynamic onset patterns plus a number of more complex onset waveforms can be distinguished. Here, we introduce a basic three-variable model with two time scales to study potential mechanisms of spontaneous seizure onset. We expand the model to demonstrate how coupling of oscillators leads to more complex seizure onset waveforms. Finally, we test the response to pulse perturbation as a potential biomarker of interictal changes.
REFERENCES
1.
A. T.
Berg
, S. F.
Berkovic
, M. J.
Brodie
et al, “Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE commission on classification and terminology, 2005–2009
,” Epilepsia
51
(4
), 676
–685
(2010
). 2.
A. L.
Velasco
, C. L.
Wilson
, T. L.
Babb
et al, “Functional and anatomic correlates of two frequently observed temporal lobe seizure-onset patterns
,” Neural Plast.
7
, 49
–63
(2000
). 3.
R.
Wennberg
, F.
Arruda
, L. F.
Quesney
et al, “Preeminence of extrahippocampal structures in the generation of mesial temporal seizures: Evidence from human depth electrode recordings
,” Epilepsia
43
, 716
–726
(2002
). 4.
S. A.
Lee
, D. D.
Spencer
, and S. S.
Spencer
, “Intracranial EEG seizure-onset patterns in neocortical epilepsy
,” Epilepsia
41
(3
), 297
–307
(2000
). 5.
J. A.
Ogren
, A.
Bragin
, C. L.
Wilson
et al, “Three-dimensional hippocampal atrophy maps distinguish two common temporal lobe seizure-onset patterns
,” Epilepsia
50
(6
), 1361
–1370
(2009 Jun
). 6.
I.
Doležalová
, M.
Brázdil
, M.
Hermanová
et al, “Intracranial EEG seizure onset patterns in unilateral temporal lobe epilepsy and their relationship to other variables
,” Clin. Neurophysiol.
124
(6
), 1079
–1088
(2013 Jun
). 7.
Y.
Wang
, A. J.
Trevelyan
, A.
Valentin
et al, “Mechanisms underlying different onset patterns of focal seizures
,” PLoS Comput. Biol.
13
(5
), e1005475
(2017
). 8.
P.
Perucca
, F.
Dubeau
, and J.
Gotman
, “Intracranial electroencephalographic seizure-onset patterns: Effect of underlying pathology
,” Brain
137
, 183
–196
(2014
). 9.
M.
Stead
, M.
Bower
, B. H.
Brinkmann
et al, “Microseizures and the spatiotemporal scales of human partial epilepsy
,” Brain
133
(9
), 2789
–2797
(2010
). 10.
F. B.
Wagner
, E. N.
Eskandar
, G. R.
Cosgrove
et al, “Microscale spatiotemporal dynamics during neocortical propagation of human focal seizures
,” NeuroImage
122
(11
), 114
–130
(2015
). 11.
S.
Naze
, C.
Bernard
, and V. K.
Jirsa
, “Computational modeling of seizure dynamics using coupled neuronal networks: Factors shaping epileptiform activity
,” PLoS Comput. Biol.
11
(5
), e1004209
(2015
). 12.
F.
Wendling
, P.
Benquet
, F.
Bartolomei
et al, “Computational models of epileptiform activity
,” J. Neurosci. Methods
260
, 233
–251
(2016
). 13.
Y.
Wang
, M.
Goodfellow
, P. N.
Taylor
et al, “Dynamic mechanisms of neocortical focal seizure onset
,” PLoS Comput. Biol.
10
(8
), e1003787
(2014
). 14.
T.
Proix
, V. K.
Jirsa
, F.
Bartolomei
et al, “Predicting the spatiotemporal diversity of seizure propagation and termination in human focal epilepsy
,” Nat. Commun.
9
(1
), 1088
(2018
). 15.
D. T.
Liley
and M.
Walsh
, “The mesoscopic modeling of burst suppression during anesthesia
,” Front. Comput. Neurosci.
7
, 46
(2013
). 16.
D.
Pinotsis
, P.
Robinson
, P.
Beim Graben
et al, “Neural masses and fields: Modeling the dynamics of brain activity
,” Front. Comput. Neurosci.
8
, 149
(2014
).17.
U.
Lalo
, O.
Palygin
, S.
Rasooli-Nejad
et al, “Exocytosis of ATP from astrocytes modulates phasic and tonic inhibition in the neocortex
,” PLoS Biol.
12
(1
), e1001747
(2014
). 18.
Y.
Buskila
, A.
Bellot-Saez
, and W. J.
Morley
, “Generating brain waves, the power of astrocytes
,” Front. Neurosci.
13
, 1125
(2019
).19.
V. K.
Jirsa
, W. C.
Stacey
, P. P.
Quilichini
et al, “On the nature of seizure dynamics
,” Brain
137
(8
), 2210
–2230
(2014
). 20.
G.
Baier
, R.
Rosch
, P. N.
Taylor
et al Design Principle for a Population-Based Model of Epileptic Dynamics. Complexity and Synergetics
(Springer
, Cham
, 2018
), pp. 333
–347
.21.
E. M.
Izhikevich
, Dynamical Systems in Neuroscience - the Geometry of Excitability and Bursting
(The MIT Press
, Cambridge
, 2007
).22.
P. N.
Taylor
and G.
Baier
, “A spatially extended model for macroscopic spike-wave discharges
,” J. Comput. Neurosci.
31
, 679
–684
(2011
). 23.
H. R.
Wilson
and J. D.
Cowan
, “Excitatory and inhibitory interactions in localized populations of model neurons
,” Biophys. J.
12
(1
), 1
–24
(1972
). 24.
M. A.
Kramer
and S. S.
Cash
, “Epilepsy as a disorder of cortical network organization
,” Neuroscientist
18
(4
), 360
–372
(2012
). 25.
L. D.
Iasemidis
, S.
Sabesan
, and L.
Good
, “A new look into epilepsy as a dynamical disorder: Seizure prediction, resetting and control
,” Encyclopedia Basic Epilepsy Res.
2009
, 1295
–1302
. 26.
Y.
Wang
, P. N.
Taylor
, M.
Goodfellow
et al, “A phase space approach for modelling of epileptic dynamics
,” Phys. Rev. E
85
(6
), 061918
(2012
). 27.
R.
Liu
, K.
Aihara
, and L.
Chen
, “Dynamical network biomarkers for identifying critical transitions and their driving networks of biologic processes
,” Quant. Biol.
1
(2
), 105
–114
(2013
). 28.
M. A.
Dahlem
, S.
Rode
, A.
May
et al, “Towards dynamical network biomarker in neuromodulation of episodic migraine
,” Transl. Neurosci.
4
(3
), 282
(2013
). 29.
D. R.
Freestone
, L.
Kuhlmann
, D. B.
Grayden
et al, “Electrical probing of cortical excitability in patients with epilepsy
,” Epilepsy Behav.
22
, S110
–S118
(2011
). 30.
R.
Enatsu
, Z.
Piao
, T.
O’Connor
et al, “Cortical excitability varies upon ictal onset patterns in neocortical epilepsy: A cortico-cortical evoked potential study
,” Clin. Neurophysiol.
123
, 252
–260
(2012
). 31.
D.
Jiménez-Jiménez
, R.
Nekkare
, L.
Flores
et al, “Prognostic value of intracranial seizure onset patterns for surgical outcome of the treatment of epilepsy
,” Clin. Neurophysiol.
126
(2
), 257
–267
(2015
). 32.
M. A.
Kramer
, W.
Truccolo
, U. T.
Eden
et al, “Human seizures self-terminate across spatial scales via a critical transition
,” Proc. Natl. Acad. Sci. U.S.A.
109
(51
), 21116
–21121
(2012
). 33.
J.
Foss
and J.
Milton
, “Multistability in recurrent neural loops arising from delay
,” J. Neurophysiol.
84
(2
), 975
–985
(2000
). 34.
commission on Classification and Terminology of the International League Against Epilepsy. Proposal for revised clinical and electroencephalographic classification of epileptic seizures
. Epilepsia
22
, 489
–501
(1981
). 35.
R.
Williamson
, S.
Hanif
, G. C.
Mathews
et al, “Generalized-onset seizures with secondary focal evolution
,” Epilepsia
50
(7
), 1827
–1832
(2009
). 36.
J.
Milton
, J.
Wu
, S. A.
Campbell
, and J.
Belair
, “Outgrowing neurological diseases microcircuits, conduction delay and childhood absence epilepsy
,” in Computational Neurology and Psychiatry
(Springer
, 2017
), pp. 11
–48
.37.
E.
Niedermeyer
, The Generalized Epilepsies: a Clinical Electroencephalographic Study
(Charles C. Thomas
, Springfield, IL
, 1972
).38.
P. N.
Taylor
, Y.
Wang
, M.
Goodfellow
et al, “A computational study of stimulus driven epileptic seizure abatement
,” PLoS One
9
(12
), e114316
(2014
). 39.
L.
Zhang
, Q.
Wang
, and G.
Baier
, “Dynamical features of a focal epileptogenic network model for stimulation-based control
,” IEEE Trans. Neural Syst. Rehabil. Eng.
28
(8
), 1856
–1865
(2020
). 40.
A. S.
Tolias
, F.
Sultan
, M.
Augath
et al, “Mapping cortical activity elicited with electrical microstimulation using FMRI in the macaque
,” Neuron.
48
, 901
–911
(2005
). 41.
D.
Fan
, Y.
Zheng
, Z.
Yang
et al, “Improving control effects of absence seizures using single-pulse alternately resetting stimulation (SARS) of corticothalamic circuit
,” Appl. Math. Mech.
9
, 1287
–1302
(2020
). © 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.