Due to the emergence of new technologies, the whole electricity system is undergoing transformations on a scale and pace never observed before. The decentralization of energy resources and the smart grid have forced utility services to rethink their relationships with customers. Demand response (DR) seeks to adjust the demand for power instead of adjusting the supply. However, DR business models rely on customer participation and can only be effective when large numbers of customers in close geographic vicinity, e.g., connected to the same transformer, opt in. Here, we introduce a model for the dynamics of service adoption on a two-layer multiplex network: the layer of social interactions among customers and the power-grid layer connecting the households. While the adoption process—based on peer-to-peer communication—runs on the social layer, the time-dependent recovery rate of the nodes depends on the states of their neighbors on the power-grid layer, making an infected node surrounded by infectious ones less keen to recover. Numerical simulations of the model on synthetic and real-world networks show that a strong local influence of the customers’ actions leads to a discontinuous transition where either none or all the nodes in the network are infected, depending on the infection rate and social pressure to adopt. We find that clusters of early adopters act as points of high local pressure, helping maintaining adopters, and facilitating the eventual adoption of all nodes. This suggests direct marketing strategies on how to efficiently establish and maintain new technologies such as DR schemes.

1.
M. A.
Porter
and
J. P.
Gleeson
,
Dynamical Systems on Networks: A Tutorial
(
Springer
,
2005
).
2.
A.
Barrat
,
M.
Barthelemy
, and
A.
Vespignani
,
Dynamical Processes on Complex Networks
(
Cambridge University Press
,
2008
).
3.
R.
Albert
and
A.-L.
Barabási
, “
Statistical mechanics of complex networks
,”
Rev. Mod. Phys.
74
,
47
97
(
2002
).
4.
M. E. J.
Newman
, “
The structure and function of complex networks
,”
SIAM Rev.
45
,
167
256
(
2003
).
5.
V.
Latora
,
V.
Nicosia
, and
G.
Russo
,
Complex Networks: Principles, Methods and Applications
(
Cambridge University Press
,
2017
).
6.
M.
De Domenico
,
A.
Solé-Ribalta
,
E.
Cozzo
,
M.
Kivelä
,
Y.
Moreno
,
M. A.
Porter
,
S.
Gómez
, and
A.
Arenas
, “
Mathematical formulation of multilayer networks
,”
Phys. Rev. X
3
,
041022
(
2013
).
7.
S.
Boccaletti
,
G.
Bianconi
,
R.
Criado
,
C. I.
Del Genio
,
J.
Gómez-Gardenes
,
M.
Romance
,
I.
Sendina-Nadal
,
Z.
Wang
, and
M.
Zanin
, “
The structure and dynamics of multilayer networks
,”
Phys. Rep.
544
,
1
122
(
2014
).
8.
M.
Kivelä
,
A.
Arenas
,
M.
Barthelemy
,
J. P.
Gleeson
,
Y.
Moreno
, and
M. A.
Porter
, “
Multilayer networks
,”
J. Compl. Netw.
2
,
203
271
(
2014
).
9.
F.
Battiston
,
V.
Nicosia
, and
V.
Latora
, “
The new challenges of multiplex networks: Measures and models
,”
Eur. Phys. J. Spec. Top.
226
,
401
416
(
2017
).
10.
G.
Bianconi
,
Multilayer Networks: Structure and Function
(
Oxford University Press
,
2018
).
11.
A.
Arenas
,
A.
Díaz-Guilera
,
J.
Kurths
,
Y.
Moreno
, and
C.
Zhou
, “
Synchronization in complex networks
,”
Phys. Rep.
469
,
93
153
(
2008
).
12.
N.
Masuda
,
M. A.
Porter
, and
R.
Lambiotte
, “
Random walks and diffusion on networks
,”
Phys. Rep.
716
,
1
58
(
2017
).
13.
R.
Pastor-Satorras
,
C.
Castellano
,
P.
Van Mieghem
, and
A.
Vespignani
, “
Epidemic processes in complex networks
,”
Rev. Mod. Phys.
87
,
925
979
(
2015
).
14.
T. W.
Valente
, “
Network models of the diffusion of innovations
,”
Comput. Math. Organ. Theory
2
,
163
164
(
1996
).
15.
I.
Iacopini
,
S.
Milojević
, and
V.
Latora
, “
Network dynamics of innovation processes
,”
Phys. Rev. Lett.
120
,
048301
(
2018
).
16.
R.
Cowan
and
N.
Jonard
, “
Network structure and the diffusion of knowledge
,”
J. Econ. Dyn. Control
28
,
1557
1575
(
2004
).
17.
X.
Fang
,
S.
Misra
,
G.
Xue
, and
D.
Yang
, “
Smart grid—The new and improved power grid: A survey
,”
IEEE Commun. Surv. Tutor.
14
,
944
980
(
2012
).
18.
N. A.
Christakis
and
J. H.
Fowler
, “
The spread of obesity in a large social network over 32 years
,”
N. Engl. J. Med.
357
,
370
379
(
2007
).
19.
J. H.
Fowler
and
N. A.
Christakis
, “
Dynamic spread of happiness in a large social network: Longitudinal analysis over 20 years in the Framingham Heart Study
,”
BMJ
337
,
a2338
(
2008
).
20.
N. A.
Christakis
and
J. H.
Fowler
, “
The collective dynamics of smoking in a large social network
,”
N. Engl. J. Med.
358
,
2249
2258
(
2008
).
21.
F. L.
Pinheiro
,
M. D.
Santos
,
F. C.
Santos
, and
J. M.
Pacheco
, “
Origin of peer influence in social networks
,”
Phys. Rev. Lett.
112
,
098702
(
2014
).
22.
N. O.
Hodas
and
K.
Lerman
, “
The simple rules of social contagion
,”
Sci. Rep.
4
,
4343
(
2014
).
23.
D.
Centola
, “
The spread of behavior in an online social network experiment
,”
Science
329
,
1194
1197
(
2010
).
24.
J.
Ugander
,
L.
Backstrom
,
C.
Marlow
, and
J.
Kleinberg
, “
Structural diversity in social contagion
,”
Proc. Natl. Acad. Sci. U.S.A.
109
,
5962
5966
(
2012
).
25.
M.
Karsai
,
G.
Iniguez
,
K.
Kaski
, and
J.
Kertész
, “
Complex contagion process in spreading of online innovation
,”
J. R. Soc. Interface
11
,
101
(
2014
).
26.
B.
Mønsted
,
P.
Sapieżyński
,
E.
Ferrara
, and
S.
Lehmann
, “
Evidence of complex contagion of information in social media: An experiment using Twitter bots
,”
PLoS ONE
12
,
e0184148
(
2017
).
27.
G.
Iñiguez
,
Z.
Ruan
,
K.
Kaski
,
J.
Kertész
, and
M.
Karsai
, “Service adoption spreading in online social networks,” in Complex Spreading Phenomena in Social Systems (Springer, 2018), pp. 151–175.
28.
D.
Centola
and
M.
Macy
, “
Complex contagions and the weakness of long ties
,”
Am. J. Sociol.
113
,
702
734
(
2007
).
29.
D.
Guilbeault
,
J.
Becker
, and
D.
Centola
, “Complex contagions: A decade in review,” in Complex Spreading Phenomena in Social Systems (Springer, 2018), pp. 3–25.
30.
L.
Böttcher
,
J.
Nagler
, and
H. J.
Herrmann
, “
Critical behaviors in contagion dynamics
,”
Phys. Rev. Lett.
118
,
088301
(
2017
).
31.
I.
Iacopini
,
G.
Petri
,
A.
Barrat
, and
V.
Latora
, “
Simplicial models of social contagion
,”
Nat. Commun.
10
,
2485
(
2019
).
32.
T.
Gross
,
C. J. D.
D’Lima
, and
B.
Blasius
, “
Epidemic dynamics on an adaptive network
,”
Phys. Rev. Lett.
96
,
208701
(
2006
).
33.
D. H.
Zanette
and
S.
Risau-Gusmán
, “
Infection spreading in a population with evolving contacts
,”
J. Biol. Phys.
34
,
135
148
(
2008
).
34.
S.
Risau-Gusmán
and
D. H.
Zanette
, “
Contact switching as a control strategy for epidemic outbreaks
,”
J. Theor. Biol.
257
,
52
60
(
2009
).
35.
J.
Gómez-Gardeñes
,
L.
Lotero
,
S.
Taraskin
, and
F.
Pérez-Reche
, “
Explosive contagion in networks
,”
Sci. Rep.
6
,
19767
(
2016
).
36.
P.
Tuzón
,
J.
Fernández-Gracia
, and
V. M.
Eguíluz
, “
From continuous to discontinuous transitions in social diffusion
,”
Front. Phys.
6
,
21
(
2018
).
37.
H.-W.
Lee
,
N.
Malik
,
F.
Shi
, and
P. J.
Mucha
, “
Social clustering in epidemic spread on coevolving networks
,”
Phys. Rev. E
99
,
062301
(
2019
).
38.
S.
Funk
,
E.
Gilad
,
C.
Watkins
, and
V. A.
Jansen
, “
The spread of awareness and its impact on epidemic outbreaks
,”
Proc. Natl. Acad. Sci. U.S.A.
106
,
6872
6877
(
2009
).
39.
S.
Funk
,
E.
Gilad
, and
V.
Jansen
, “
Endemic disease, awareness, and local behavioural response
,”
J. Theor. Biol.
264
,
501
509
(
2010
).
40.
Q.
Wu
,
X.
Fu
,
M.
Small
, and
X.-J.
Xu
, “
The impact of awareness on epidemic spreading in networks
,”
Chaos
22
,
013101
(
2012
).
41.
C.
Granell
,
S.
Gómez
, and
A.
Arenas
, “
Dynamical interplay between awareness and epidemic spreading in multiplex networks
,”
Phys. Rev. Lett.
111
,
128701
(
2013
).
42.
B.
Steinegger
,
A.
Cardillo
,
P.
De Los Rios
,
J.
Gómez-Gardeñes
, and
A.
Arenas
, “
Interplay between cost and benefits triggers nontrivial vaccination uptake
,”
Phys. Rev. E
97
,
032308
(
2018
).
43.
H.
Wu
,
A.
Arenas
, and
S.
Gómez
, “
Influence of trust in the spreading of information
,”
Phys. Rev. E
95
,
012301
(
2017
).
44.
F.
Bagnoli
,
P.
Lio
, and
L.
Sguanci
, “
Risk perception in epidemic modeling
,”
Phys. Rev. E
76
,
061904
(
2007
).
45.
G. F.
de Arruda
,
G.
Petri
,
F. A.
Rodrigues
, and
Y.
Moreno
, “Impact of the distribution of recovery rates on disease spreading in complex networks,”
Phys. Rev. Research
2
,
013046
(
2020
).
46.
A.
Darbon
,
D.
Colombi
,
E.
Valdano
,
L.
Savini
,
A.
Giovannini
, and
V.
Colizza
, “
Disease persistence on temporal contact networks accounting for heterogeneous infectious periods
,”
R. Soc. Open Sci.
6
,
181404
(
2019
).
47.
A.
Czaplicka
,
R.
Toral
, and
M.
San Miguel
, “
Competition of simple and complex adoption on interdependent networks
,”
Phys. Rev. E
94
,
062301
(
2016
).
48.
CoCCU
, The 21st Conference of the Parties to the United Nations Framework, “The Paris Agreement,” see https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (2015).
49.
V.
Giordano
and
G.
Fulli
, “
A business case for smart grid technologies: A systemic perspective
,”
Energy Policy
40
,
252
(
2012
).
50.
J.
Rodríguez-Molina
,
M.
Martínez-Núñez
,
J.-F.
Martínez
, and
W.
Pérez-Aguiar
, “
Business models in the smart grid: Challenges, opportunities and proposals for prosumer profitability
,”
Energies
7
,
6142
6171
(
2014
).
51.
B.
Schäfer
,
M.
Matthiae
,
M.
Timme
, and
D.
Witthaut
, “
Decentral smart grid control
,”
New J. Phys.
17
,
015002
(
2015
).
52.
N.
Li
,
L.
Chen
, and
S. H.
Low
, “Optimal demand response based on utility maximization in power networks,” in 2011 IEEE Power and Energy Society General Meeting (IEEE, 2011), pp. 1–8.
53.
A.-H.
Mohsenian-Rad
,
V. W.
Wong
,
J.
Jatskevich
,
R.
Schober
, and
A.
Leon-Garcia
, “
Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid
,”
IEEE Trans. Smart Grid
1
,
320
331
(
2010
).
54.
C.-L.
Su
and
D.
Kirschen
, “
Quantifying the effect of demand response on electricity markets
,”
IEEE Trans. Power Syst.
24
,
1199
1207
(
2009
).
55.
D.
Pudjianto
,
C.
Ramsay
, and
G.
Strbac
, “
Virtual power plant and system integration of distributed energy resources
,”
IET Renew. Power Gener.
1
,
10
16
(
2007
).
56.
P.
Siano
, “
Demand response and smart grids—A survey
,”
Renew. Sustain. Energy Rev.
30
,
461
478
(
2014
).
57.
M.
Barthélemy
, “
Spatial networks
,”
Phys. Rep.
499
,
1
101
(
2011
).
58.
D. J.
Watts
and
S. H.
Strogatz
, “
Collective dynamics of ‘small-world’ networks
,”
Nature
393
,
440
442
(
1998
).
59.
P. G.
Fennell
,
S.
Melnik
, and
J. P.
Gleeson
, “
Limitations of discrete-time approaches to continuous-time contagion dynamics
,”
Phys. Rev. E
94
,
052125
(
2016
).
60.
E.
Valdano
,
M. R.
Fiorentin
,
C.
Poletto
, and
V.
Colizza
, “
Epidemic threshold in continuous-time evolving networks
,”
Phys. Rev. Lett.
120
,
068302
(
2018
).
61.
S.
Porta
,
P.
Crucitti
, and
V.
Latora
, “
The network analysis of urban streets: A primal approach
,”
Environ. Plann. B Plann. Des.
33
,
705
725
(
2006
).
62.
B. M.
Waxman
, “
Routing of multipoint connections
,”
IEEE J. Sel. Areas Commun.
6
,
1617
1622
(
1988
).
63.
E.
Arcaute
,
C.
Molinero
,
E.
Hatna
,
R.
Murcio
,
C.
Vargas-Ruiz
,
A. P.
Masucci
, and
M.
Batty
, “
Cities and regions in Britain through hierarchical percolation
,”
Royal Soc. Open Sci.
3
,
150691
(
2016
).
64.
P. D.
Karampourniotis
,
S.
Sreenivasan
,
B. K.
Szymanski
, and
G.
Korniss
, “
The impact of heterogeneous thresholds on social contagion with multiple initiators
,”
PLoS ONE
10
,
e0143020
(
2015
).
65.
R.
Pastor-Satorras
and
A.
Vespignani
, “
Immunization of complex networks
,”
Phys. Rev. E
65
,
036104
(
2002
).
66.
M.
Kitsak
,
L. K.
Gallos
,
S.
Havlin
,
F.
Liljeros
,
L.
Muchnik
,
H. E.
Stanley
, and
H. A.
Makse
, “
Identification of influential spreaders in complex networks
,”
Nat. Phys.
6
,
888
(
2010
).
67.
F.
Morone
and
H. A.
Makse
, “
Influence maximization in complex networks through optimal percolation
,”
Nature
524
,
65
(
2015
).
68.
C. S.
Bale
,
N. J.
McCullen
,
T. J.
Foxon
,
A. M.
Rucklidge
, and
W. F.
Gale
, “
Harnessing social networks for promoting adoption of energy technologies in the domestic sector
,”
Energy Policy
63
,
833
844
(
2013
).
69.
V.
Rai
and
S. A.
Robinson
, “
Agent-based modeling of energy technology adoption: Empirical integration of social, behavioral, economic, and environmental factors
,”
Environ. Model. Softw.
70
,
163
177
(
2015
).
70.
V.
Rai
and
A. D.
Henry
, “
Agent-based modelling of consumer energy choices
,”
Nat. Clim. Chang.
6
,
556
562
(
2016
).
71.
L. X.
Hesselink
and
E. J.
Chappin
, “
Adoption of energy efficient technologies by households—Barriers, policies and agent-based modelling studies
,”
Renew. Sustain. Energy Rev.
99
,
29
41
(
2019
).
72.
K.
Nyborg
,
J. M.
Anderies
,
A.
Dannenberg
,
T.
Lindahl
,
C.
Schill
,
M.
Schlüter
,
W. N.
Adger
,
K. J.
Arrow
,
S.
Barrett
,
S.
Carpenter
,
F.
Stuart Chapin III
,
A.-S.
Crépin
,
G.
Daily
,
P.
Ehrlich
,
C.
Folke
,
W.
Jager
,
N.
Kautsky
,
S. A.
Levin
,
O. J.
Madsen
,
S.
Polasky
,
M.
Scheffer
,
B.
Walker
,
E. U.
Weber
,
J.
Wilen
,
A.
Xepapadeas
, and
A.
de Zeeuw
, “
Social norms as solutions
,”
Science
354
,
42
43
(
2016
).
73.
M.
Barthélemy
, “
Crossover from scale-free to spatial networks
,”
Europhys. Lett.
63
,
915
(
2003
).
74.
J. L.
Toole
,
M.
Cha
, and
M. C.
González
, “
Modeling the adoption of innovations in the presence of geographic and media influences
,”
PLoS ONE
7
,
e29528
(
2012
).
75.
OS MasterMap Integrated Transport Network Layer [GML geospatial data]; coverage: Great Britain, updated January 2010, ordnance Survey, GB; using: EDINA Digimap Ordnance Survey Service; © Crown Copyright and Database Right (February 2016); Ordnance Survey (Digimap Licence).
76.
77.
S.
Gómez
,
A.
Arenas
,
J.
Borge-Holthoefer
,
S.
Meloni
, and
Y.
Moreno
, “
Discrete-time Markov chain approach to contact-based disease spreading in complex networks
,”
Europhys. Lett.
89
,
38009
(
2010
).
You do not currently have access to this content.