Depicting network structures from measurable data is of significance. In real-world situations, it is common that some variables of networks are unavailable or even unknown. These unavailable and unknown variables, i.e., hidden variables, will lead to much reconstruction error, even make reconstruction methods useless. In this paper, to solve hidden variable problems, we propose three reconstruction methods, respectively, based on the following conditions: statistical characteristics of hidden variables, linearizable hidden variables, and white noise injection. Among them, the method based on white noise injection is active and invasive. In our framework, theoretic analyses of these three methods are given at first, and, furthermore, the validity of theoretical derivations and the robustness of these methods are fully verified through numerical results. Our work may be, therefore, helpful for practical experiments.

1.
E.
Bullmore
and
O.
Sporns
,
Nat. Rev. Neurosci.
10
,
186
198
(
2009
).
2.
E.
Schneidman
,
M. J.
Berry
,
R.
Segev
et al.,
Nature
440
(
7087
),
1007
1012
(
2006
).
3.
A. J.
Butte
,
P.
Tamayo
,
D.
Slonim
et al.,
Proc. Natl. Acad. Sci. U.S.A.
97
(
22
),
12182
12186
(
2000
).
4.
C. elegans Sequencing Consortium
,
Science
282
(
5396
),
2012
2018
(
1998
).
5.
A. L.
Barabasi
and
Z. N.
Oltvai
,
Nat. Rev. Genet.
5
,
101
113
(
2004
).
6.
D. M.
Gale
and
S.
Kariv
,
Am. Econ. Rev.
97
,
99
(
2007
).
7.
N.
Eagle
,
A. S.
Pentland
, and
D.
Lazer
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
15274
(
2009
).
8.
D.
Marbach
,
J. C.
Costello
,
R.
Kuffner
et al.,
Nat. Methods
9
,
796
(
2012
).
9.
B.
Barzel
and
A.
Barabasi
,
Nat. Biotechnol.
31
,
720
(
2013
).
10.
K.
Basso
,
A.
Margolin
,
G.
Stolovitzky
et al.,
Nat. Genet.
37
,
382
(
2005
).
11.
M.
Timme
and
J.
Casadiego
,
J. Phys. A Math. Theor.
47
,
343001
(
2014
).
12.
Z.
Levnajic
and
A.
Pikovsky
,
Sci. Rep.
4
,
5030
(
2014
).
13.
G. L.
Baker
,
J. P.
Gollub
, and
J. A.
Blackbum
,
Chaos
6
(
4
),
528
(
1996
).
14.
V. N.
Smelyanskiy
,
D. G.
Luchinsky
,
D. A.
Timucin
et al.,,
Phys. Rev. E
72
(
2
),
026202
(
2005
).
15.
V. N.
Smelyanskiy
,
D. G.
Luchinsky
,
D. A.
Timucin
et al.,,
Phys. Rev. Lett.
94
(
9
),
098101
(
2005
).
16.
T.
Stankovski
,
A.
Duggento
,
P. V. E.
McClintock
et al.,,
Phys. Rev. Lett.
109
,
024101
(
2012
).
17.
W. X.
Wang
,
J.
Ren
,
Y. C.
Lai
et al.,
Chaos
22
,
033131
(
2012
).
18.
Z.
Zhang
,
Z.
Zheng
,
H.
Niu
et al.,
Phys. Rev. E
91
,
012814
(
2015
).
19.
Y.
Chen
,
Z.
Zhang
, and
T.
Chen
et al.,
Sci. Rep.
7
,
44639
(
2017
).
20.
R.
Shi
,
G.
Hu
, and
S.
Wang
,
Commun. Nonlinear Sci.
72
,
407
416
(
2019
).
21.
A.
Pikovsky
,
Europhys. Lett.
119
,
30004
(
2017
).
22.
H.
Song
,
C. C.
Chen
,
J. J.
Sun
et al.,
Phys. Rev. E
90
,
012703
(
2014
).
23.
M. G.
Leguia
,
R. G.
Andrzejak
, and
Z.
Levnajic
,
J. Phys. A Math. Theor.
50
,
334001
(
2017
).
24.
D.
Yu
,
M.
Righero
, and
L.
Kocarev
,
Phys. Rev. Lett.
97
,
188701
(
2006
).
26.
S. G.
Shandilya
and
M.
Timme
,
New J. Phys.
13
,
013004
(
2011
).
27.
J.
Ren
,
W. X.
Wang
,
B.
Li
et al.,
Phys. Rev. Lett.
104
,
058701
(
2010
).
28.
E. S. C.
Ching
and
H. C.
Tam
,
Phys. Rev. E
95
,
010301
(
2017
).
30.
Z
Levnajic
and
A
Pikovsky
,
Phys. Rev. Lett.
107
(
3
),
034101
(
2011
).
31.
R
Shi
,
C
Deng
, and
S.
Wang
,
EPL
124
(
1
),
18002
(
2018
).
32.
E. S. C.
Ching
and
P. H.
Tam
,
Phys. Rev. E
98
(
6
),
062318
(
2018
).
33.
Z.
Shen
,
W. X.
Wang
,
Y.
Fan
,
Z. R.
Di
, and
Y. C.
Lai
,
Nat. Commun.
5
,
4323
(
2014
).
34.
R. Q.
Su
,
W. X.
Wang
, and
Y. C.
Lai
,
R. Soc. Open Sci.
3
,
150577
(
2016
).
35.
C.
Zhang
,
Y.
Chen
, and
G.
Hu
,
Front. Phys.
12
(
3
),
128906
(
2017
).
36.
Y.
Chen
,
S.
Wang
,
Z.
Zheng
et al.,
EPL
113
,
18005
(
2016
).
37.
H. C.
Tam
,
E. S. C.
Ching
, and
P. Y.
Lai
,
Physica A
502
,
106
(
2018
).
You do not currently have access to this content.