In this paper, we expose some of the analytical framework used to prove the differentiability of equilibrium states probabilities with respect to the dynamics. We explore the relationship between Birkhoff metrics in cones and their corresponding anisotropic spaces and prove some useful folklore theorems. We apply that framework to revisit several examples recently studied in the research works about equilibrium states.

1
R.
Abraham
,
J. E.
Marsden
, and
T. S.
Ratiu
,
Manifolds, Tensor Analysis, and Applications
, 3rd ed. (
Addison-Wesley
,
Reading, MA
,
2007
).
2
V.
Baladi
,
Positive Transfer Operators and Decay of Correlations
(
World Scientific Publishing Co., Inc.
,
2000
).
3
V.
Baladi
,
M.
Benedicks
, and
D.
Schnellmann
, “
Whitney-Holder continuity of the SRB measure for transversal families of smooth unimodal maps
,”
Invent. Math.
201
,
773
844
(
2015
).
4
T.
Bomfim
and
A.
Castro
, “
Linear response, and consequences for differentiability of statistical quantities and multifractal analysis
,”
J. Stat. Phys.
174
,
135
159
(
2019
).
5
V.
Baladi
and
S.
Gouezel
, “
Good Banach spaces for piecewise hyperbolic maps via interpolation
,”
Ann. Inst. Henri Poincare Anal. Non Linéaire
26
,
1453
1481
(
2009
).
6
V.
Baladi
and
S.
Gouezel
, “
Banach spaces for piecewise cone hyperbolic maps
,”
J. Modern Dyn.
4
,
91
137
(
2010
).
7
V.
Baladi
and
D.
Smania
, “
Linear response formula for piecewise expanding unimodal maps
,”
Nonlinearity
21
,
677
711
(
2008
).
8
V.
Baladi
and
D.
Smania
, “
Analyticity of the SRB measure for holomorphic families of quadratic-like Collet-Eckmann maps
,”
Proc. Amer. Math. Soc.
137
,
1431
1437
(
2009
).
9
V.
Baladi
and
D.
Smania
, “
Linear response for smooth deformations of generic nonuniformly hyperbolic unimodal maps
,”
Ann. Sci. l’ENS
45
,
861
926
(
2012
).
10
W.
Bahsoun
and
B.
Saussol
, “
Linear response in the intermittent family: Differentiation in a weighted C0-norm
,”
Discrete Contin. Dyn. Syst. Ser. A
36
(
12
),
6657
6668
(
2016
).
11
V.
Baladi
and
M.
Tsujii
, “
Hölder and Sobolev spaces for hyperbolic diffeomorphisms
,”
Ann. Inst. Fourier
57
,
27
54
(
2007
).
12
V.
Baladi
and
M.
Todd
, “
Linear response for intermittent maps
,”
Commun. Math. Phys.
347
,
857
874
(
2016
).
13
M.
Blank
,
G.
Keller
, and
C.
Liverani
, “
Ruelle-Perron-Frobenius spectrum for Anosov maps
,”
Nonlinearity
15
,
1905
1973
(
2001
).
14
T.
Bomfim
,
A.
Castro
, and
P.
Varandas
, “
Differentiability of thermodynamical quantities in non-uniformly expanding dynamics
,”
Adv. Math.
292
,
478
528
(
2016
).
15
R.
Bowen
, “Equilibrium states and the ergodic theory of Anosov diffeomorphisms,” in Lecture Notes in Mathematics (Springer-Verlag, 1975), Vol. 470.
16
R.
Bowen
and
D.
Ruelle
, “
The ergodic theory of Axiom A flows
,”
Invent. Math.
29
,
181
202
(
1975
).
17
O.
Butterley
and
C.
Liverani
, “
Smooth Anosov flows: Correlation spectra and stability
,”
J. Mod. Dyn.
1
,
301
322
(
2007
).
18
A.
Castro
, “
Backward inducing and exponential decay of correlations for partially hyperbolic attractors
,”
Israel J. Math.
130
,
29
75
(
2002
).
19
A.
Castro
, “
Fast mixing for attractors with mostly contracting central direction
,”
Ergodic Theory Dyn. Syst.
24
,
17
44
(
2004
).
20
A.
Castro
and
P.
Varandas
, “
Equilibrium states for non-uniformly expanding maps: Decay of correlations and strong stability
,”
Ann. Inst. Henri Poincare Anal. Non Linéaire
30
(
2
),
225
249
(
2013
).
21
A.
Castro
and
T.
Nascimento
, “
Statistical properties of the maximal entropy measure for partially hyperbolic attractors
,”
Ergod. Theory Dyn. Syst.
37
(
4
),
1060
1101
(
2017
).
22
S. B.
Chae
, Holomorphy and Calculus in Normed Spaces, Monographs and Textbooks in Pure and Applied Mathematics (Marcel Dekker, New York, 1985).
23
M.
Demers
and
C.
Liverani
, “
Stability of statistical properties in two-dimensional piecewise hyperbolic maps
,”
Trans. Amer. Math. Soc.
360
,
4777
4814
(
2008
).
24
M.
Demers
and
H.-K.
Zhang
, “
A functional analytic approach to perturbations of the Lorentz gas
,”
Commun. Math. Phys.
324
,
767
830
(
2013
).
25
D.
Dolgopyat
, “
On differentiability of SRB states for partially hyperbolic systems
,”
Invent. Math.
155
,
389
449
(
2004
).
26
J.
Franks
, “Manifolds of Cr mappings and applications to differentiable dynamical systems,” in Studies in Analysis, Advances in Mathematics: Supplementary Studies (Academic Press, 1979), Vol. 4, pp. 271–290.
27
S.
Gouezel
and
C.
Liverani
, “
Banach spaces adapted to Anosov systems
,”
Ergodic Theory Dyn. Syst.
26
,
189
217
(
2006
).
28
T.
Hunt
and
R.
MacKay
, “
Anosov parameter values for the triple linkage and a physical system with a uniformly chaotic attractor
,”
Nonlinearity
16
,
1499
1510
(
2003
).
29
V.
Horita
and
M.
Viana
, “
Hausdorff dimension for non-hyperbolic repellers. II. DA diffeomorphisms
,”
Discrete Contin. Dyn. Syst.
13
,
1125
1152
(
2005
).
30
A.
Katok
,
G.
Knieper
,
M.
Pollicott
, and
M. H.
Weiss
, “
Differentiability and analyticity of topological entropy for Anosov and geodesic flows
,”
Invent. Math.
98
,
581
597
(
1989
).
31
T.
Kato
,
Perturbation Theory for Linear Operators
, 2nd ed. (
Springer-Verlag
,
Berlin
,
1980
).
32
A.
Korepanov
, “
Linear response for intermittent maps with summable and nonsummable decay of correlations
,”
Nonlinearity
29
(
6
),
1735
1754
(
2016
).
33
G.
Keller
and
C.
Liverani
, “
Stability of the spectrum for transfer operators
,”
Ann. Sc. Norm. Super Pisa
28
,
141
152
(
1999
).
34
F.
Ledrappier
, “
Proprietés ergodique de mesures de Sinai
,”
Publ. Math. IHES
59
,
163
188
(
1984
).
35
S.
Lang
,
Undergraduate Analysis
, 2nd ed. (
Springer-Verlag
,
New York
,
1997
).
36
C.
Liverani
, “
Decay of correlations
,”
Ann. Math.
142
,
239
301
(
1995
).
37
R.
Palais
,
Foundations of Global Non-Linear Analysis
(
Benjamin
,
New York
,
1968
).
38
W.
Parry
and
M.
Pollicott
, “
Zeta functions and closed orbits for hyperbolic systems
,”
Asterisque
187–188
,
1
268
(
1990
).
39
D.
Ruelle
, “
Differentiation of SRB states
,”
Commun. Math. Phys.
187
,
227
241
(
1997
).
40
D.
Ruelle
, “
Application of hyperbolic dynamics to physics: Some problems and conjectures
,”
Bull. Amer. Math. Soc.
41
,
275
278
(
2004
).
41
D.
Ruelle
, “
Differentiating the absolutely continuous invariant measure of an interval map f with respect to f
,”
Commun. Math. Phys.
258
,
445
453
(
2005
).
42
D.
Ruelle
, “
A review of linear response theory for general differentiable dynamical systems
,”
Nonlinearity
22
,
855
870
(
2009
).
43
H. H.
Rugh
, “
Cones and gauges in complex spaces: Spectral gaps and complex Perron-Frobenius theory
,”
Ann. Math.
171
,
1707
1752
(
2010
).
44
O.
Sarig
, “
Thermodynamic formalism for countable Markov shifts
,”
Ergodic Theory Dyn. Syst.
19
,
1565
1593
(
1999
).
45
O.
Sarig
, “Introduction to the transfer operator method,” lecture notes, Second Brazilian School on Dynamical Systems, 2012.
46
Y.
Sinai
, “
Gibbs measures in ergodic theory
,”
Russ. Math. Surveys
27
,
21
69
(
1972
).
47
P.
Varandas
, “
Correlation decay and recurrence asymptotics for some robust nonuniformly hyperbolic maps
,”
J. Stat. Phys.
133
,
813
839
(
2008
).
48
P.
Varandas
and
M.
Viana
, “
Existence, uniqueness and stability of equilibrium states for non-uniformly expanding maps
,”
Ann. Inst. Henri Poincare Anal. Non Linéaire
27
,
555
593
(
2010
).
49
P.
Varandas
, “
Non-uniform specification and large deviations for weak Gibbs measures
,”
J. Stat. Phys.
146
,
330
358
(
2012
).
50
M.
Viana
, Stochastic Dynamics of Deterministic Systems, Colóquio Brasileiro de Matemática (IMPA, 1997).
51
P.
Walters
, “
Differentiability properties of the pressure of a continuous transformation on a compact metric space
,”
J. Lond. Math. Soc.
s2-46
(
3
),
471
481
(
1992
).
52
L.-S.
Young
, “
Statistical properties of dynamical systems with some hyperbolicity
,”
Ann. Math.
147
(
3
),
585
650
(
1998
).
You do not currently have access to this content.