An abrupt climatic transition could be triggered by a single extreme event, and an α-stable non-Gaussian Lévy noise is regarded as a type of noise to generate such extreme events. In contrast with the classic Gaussian noise, a comprehensive approach of the most probable transition path for systems under α-stable Lévy noise is still lacking. We develop here a probabilistic framework, based on the nonlocal Fokker-Planck equation, to investigate the maximum likelihood climate change for an energy balance system under the influence of greenhouse effect and Lévy fluctuations. We find that a period of the cold climate state can be interrupted by a sharp shift to the warmer one due to larger noise jumps with low frequency. Additionally, the climate change for warming 1.5°C under an enhanced greenhouse effect generates a steplike growth process. These results provide important insights into the underlying mechanisms of abrupt climate transitions triggered by a Lévy process.

1.
National Research Council
,
Abrupt Impacts of Climate Change: Anticipating Surprises
(
National Academies Press
,
2013
).
2.
I. K.
Seierstad
,
P. M.
Abbott
,
M.
Bigler
,
T.
Blunier
,
A. J.
Bourne
,
E.
Brook
,
S. L.
Buchardt
,
C.
Buizert
,
H.
Clausen
,
E.
Cook
et al., “
Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores for the past 104 ka reveal regional millennial-scale δ18O gradients with possible Heinrich event imprint
,”
Quat. Sci. Rev.
106
,
29
46
(
2014
).
3.
W.
Dansgaard
,
S.
Johnsen
,
H.
Clausen
,
D.
Dahl-Jensen
,
N.
Gundestrup
,
C.
Hammer
,
C.
Hvidberg
,
J.
Steffensen
,
A.
Sveinbjörnsdottir
,
J.
Jouzel
et al., “
Evidence for general instability of past climate from a 250-kyr ice-core record
,”
Nature
364
,
218
(
1993
).
4.
W.
Dansgaard
,
S. J.
Johnsen
,
H. B.
Clausen
,
D.
Dahl-Jensen
,
N.
Gundestrup
,
C. U.
Hammer
, and
H.
Oeschger
, “
North Atlantic climatic oscillations revealed by deep Greenland ice cores
,”
Clim. Process. Clim. Sensit.
29
,
288
298
(
1984
).
5.
P.
Ashwin
,
S.
Wieczorek
,
R.
Vitolo
, and
P.
Cox
, “
Tipping points in open systems: Bifurcation, noise-induced and rate-dependent examples in the climate system
,”
Philos. Trans. R. Soc. A
370
,
1166
1184
(
2012
).
6.
T. M.
Lenton
,
H.
Held
,
E.
Kriegler
,
J. W.
Hall
,
W.
Lucht
,
S.
Rahmstorf
, and
H. J.
Schellnhuber
, “
Tipping elements in the Earth’s climate system
,”
Proc. Natl. Acad. Sci. U.S.A.
105
,
1786
1793
(
2008
).
7.
S.
Bathiany
,
H.
Dijkstra
,
M.
Crucifix
,
V.
Dakos
,
V.
Brovkin
,
M. S.
Williamson
,
T. M.
Lenton
, and
M.
Scheffer
, “
Beyond bifurcation: Using complex models to understand and predict abrupt climate change
,”
Dyn. Stat. Clim. Syst.
1
(
1
),
dzw004
(
2016
).
8.
N.
Boers
,
M.
Ghil
, and
D. D.
Rousseau
, “
Ocean circulation, ice shelf, and sea ice interactions explain Dansgaard–Oeschger cycles
,”
Proc. Natl. Acad. Sci. U.S.A.
115
,
E11005
E11014
(
2018
).
9.
A.
Clement
and
L.
Peterson
, “
Mechanisms of abrupt climate change of the last glacial period
,”
Rev. Geophys.
46
,
RG4002
, (
2008
).
10.
P. D.
Ditlevsen
, “
Observation of α-stable noise induced millennial climate changes from an ice-core record
,”
Geophys. Res. Lett.
26
,
1441
1444
, (
1999
).
11.
J.
Knox
and
Z.
Kundzewicz
, “
Extreme hydrological events, palaeo-information and climate change
,”
Hydrological Sci. J.
42
,
765
779
(
1997
).
12.
Á.
Corral
and
Á.
González
, “
Power law size distributions in geoscience revisited
,”
Earth Space Sci.
6
(
5
),
673
697
(
2019
).
13.
P.
Ditlevsen
, “
Climate transitions on long timescales
,”
Contemp. Phys.
50
,
511
532
(
2009
).
14.
K. I.
Sato
,
Lévy Processes and Infinitely Divisible Distributions
(
Cambridge University Press
,
1999
).
15.
V.
Dakos
,
M.
Scheffer
,
E.
van Nes
,
V.
Brovkin
,
V.
Petoukhov
, and
H.
Held
, “
Slowing down as an early warning signal for abrupt climate change
,”
Proc. Natl. Acad. Sci. U.S.A.
105
,
14308
14312
(
2008
).
16.
M.
Scheffer
,
J.
Bascompte
,
W. A.
Brock
,
V.
Brovkin
,
S. R.
Carpenter
,
V.
Dakos
,
H.
Held
,
E. H.
Van Nes
,
M.
Rietkerk
, and
G.
Sugihara
, “
Early-warning signals for critical transitions
,”
Nature
461
,
53
(
2009
).
17.
T. M.
Lenton
, “
Early warning of climate tipping points
,”
Nat. Clim. Chang.
1
,
201
(
2011
).
18.
M. I.
Freidlin
and
A. D.
Wentzell
, “Random perturbations,” in Random Perturbations of Dynamical Systems (Springer, 1998).
19.
X.
Wan
and
G.
Lin
, “
Hybrid parallel computing of minimum action method
,”
Parallel Comput.
39
,
638
651
(
2013
).
20.
K. L. C.
Hunt
and
J.
Ross
, “
Path integral solutions of stochastic equations for nonlinear irreversible processes: The uniqueness of the thermodynamic Lagrangian
,”
J. Chem. Phys.
75
,
976
984
(
1981
).
21.
D.
Dürr
and
A.
Bach
, “
The Onsager-Machlup function as Lagrangian for the most probable path of a diffusion process
,”
Commun. Math. Phys.
60
,
153
170
(
1978
).
22.
L.
Onsager
and
S.
Machlup
, “
Fluctuations and irreversible processes
,”
Phys. Rev.
91
,
1505
(
1953
).
23.
O.
Zeitouni
and
A.
Dembo
, “
A maximum a posteriori estimator for trajectories of diffusion processes
,”
Stochastics
20
,
221
246
(
1987
).
24.
D. V.
Berkov
, “
Numerical calculation of the energy barrier distribution in disordered many-particle systems: The path integral method
,”
J. Magn. Magn. Mater.
186
,
199
213
(
1998
).
25.
Y.
Chao
and
J.
Duan
, “
The Onsager-Machlup function as Lagrangian for the most probable path of a jump-diffusion process
,”
Nonlinearity
32
,
3715
3741
(
2019
).
26.
T.
Gao
,
J.
Duan
, and
X.
Li
, “
Fokker-Planck equations for stochastic dynamical systems with symmetric Lévy motions
,”
Appl. Math. Comput.
278
,
1
20
(
2016
).
27.
X.
Sun
,
X.
Li
, and
Y.
Zheng
, “
Governing equations for probability densities of Marcus stochastic differential equations with Lévy noise
,”
Stoch. Dynam.
17
,
1750033
(
2017
).
28.
T.
Gao
,
J.
Duan
,
X.
Kan
, and
Z.
Cheng
, “
Dynamical inference for transitions in stochastic systems with α-stable Lévy noise
,”
J. Phys. A Math. Theor.
49
,
294002
(
2016
).
29.
Z.
Cheng
,
J.
Duan
, and
L.
Wang
, “
Most probable dynamics of some nonlinear systems under noisy fluctuations
,”
Commun. Nonlinear Sci.
30
,
108
114
(
2016
).
30.
H.
Wang
,
X.
Chen
, and
J.
Duan
, “
A stochastic pitchfork bifurcation in most probable phase portraits
,”
Int. J. Bifurcat. Chaos
28
,
1850017
(
2018
).
31.
F. C.
Klebaner
,
Introduction to Stochastic Calculus with Applications
(
World Scientific Publishing Company
,
2012
).
32.
J.
Duan
,
An Introduction to Stochastic Dynamics
(
Cambridge University Press
,
2015
).
33.
Y.
Zheng
and
X.
Sun
, “
Governing equations for probability densities of stochastic differential equations with discrete time delays
,”
Discrete Contin. Dyn. Syst. Ser. B
22
(
9
),
3615
3628
(
2017
).
34.
B.
Saltzman
,
Dynamical Paleoclimatology: Generalized Theory of Global Climate Change
(
Elsevier
,
2001
).
35.
H.
Kaper
and
H.
Engler
,
Mathematics and Climate
(
SIAM
,
2013
).
36.
W. D.
Nordhaus
, “
An optimal transition path for controlling greenhouse gases
,”
Science
258
,
1315
1319
(
1992
).
37.
J.
Hansen
,
L.
Nazarenko
,
R.
Ruedy
,
M.
Sato
,
J.
Willis
,
A.
Del Genio
,
D.
Koch
,
A.
Lacis
,
K.
Lo
,
S.
Menon
,
T.
Novakov
,
J.
Perlwitz
,
G.
Russell
,
G. A.
Schmidt
, and
N.
Tausnev
, “
Earth’s energy imbalance: Confirmation and implications
,”
Science
308
,
1431
1435
(
2005
).
38.
K.
Hasselmann
, “
Stochastic climate models Part I. Theory
,”
Tellus
28
,
473
485
(
1976
).
39.
P. D.
Ditlevsen
, “
Anomalous jumping in a double-well potential
,”
Phys. Rev. E
60
,
172
(
1999
).
40.
P. F.
Hoffman
,
A. J.
Kaufman
,
G. P.
Halverson
, and
D. P.
Schrag
, “
A neoproterozoic snowball earth
,”
Science
281
,
1342
1346
(
1998
).
41.
P.
Imkeller
, “Energy balance models—Viewed from stochastic dynamics,” in Stochastic Climate Models (Springer, 2001), pp. 213–240.
42.
V.
Masson-Delmotte
,
P.
Zhai
,
H. O.
Pörtner
,
D.
Roberts
,
J.
Skea
,
P. R.
Shukla
,
A.
Pirani
,
W.
Moufouma-Okia
,
C.
Péan
,
R.
Pidcock
,
S.
Connors
,
J. P. R.
Matthews
,
Y.
Chen
,
X.
Zhou et al.
,
Global Warming of 1.5 C. An IPCC Special Report on the Impacts of Global Warming of 1.5 C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty
(
World Meteorological Organization
,
Geneva
,
2018
).
43.
Y.
Huang
,
Y.
Chao
,
S.
Yuan
, and
J.
Duan
, “
Characterization of the most probable transition paths of stochastic dynamical systems with stable Lévy noise
,”
J. Stat. Mech.
2019
,
063204
.
44.
D.
Applebaum
,
Lévy Processes and Stochastic Calculus
(
Cambridge University Press
,
2009
).
45.
T.
Gao
,
J.
Duan
,
X.
Li
, and
R.
Song
, “
Mean exit time and escape probability for dynamical systems driven by Lévy noises
,”
SIAM J. Sci. Comput.
36
,
A887
A906
(
2014
).
46.
X.
Wan
and
H.
Yu
, “
A dynamic-solver–consistent minimum action method: With an application to 2D Navier-Stokes equations
,”
J. Comput. Phys.
331
,
209
226
(
2017
).
47.
Y.
Zheng
,
L.
Serdukova
,
J.
Duan
, and
J.
Kurths
, “
Transitions in a genetic transcriptional regulatory system under Lévy motion
,”
Sci. Rep.
6
,
29274
(
2016
).
You do not currently have access to this content.