The social force model (SFM) can be applied to characterize pedestrian dynamics in normal scenarios. However, its model of interactions among pedestrians deviates from actual scenarios to some extent. Thus, we propose an improved SFM where pedestrians consider avoiding potential conflicts in advance during the walking process. Meanwhile, the response range of potential conflicts is related to the response time and relative velocity vector. Simulation results demonstrate that the conflict avoidance force plays an important role in guiding pedestrian dynamics. Conflict avoidance makes pedestrian trajectories smoother and more realistic. Moreover, for high pedestrian density (without congestion), moderate values of response time may exist, resulting in the minimum evacuation efficiency. We hope to provide some insights into how to better model interactions among pedestrians during normal evacuation.

1.
A.
Johansson
,
D.
Helbing
, and
P. K.
Shukla
,
Adv. Complex Syst.
10
,
271
(
2007
).
2.
M.
Isobe
,
D.
Helbing
, and
T.
Nagatani
,
Phys. Rev. E
69
,
066132
(
2004
).
3.
R. Y.
Guo
and
H. J.
Huang
,
Physica A
387
,
580
(
2008
).
4.
L.
Zhang
,
J. H.
Wang
, and
Q. Y.
Shi
,
J. Syst. Sci. Complex.
27
,
430
(
2014
).
5.
V. J.
Blue
,
J. L.
Adler
and
NRC
, in
Traffic Flow Theory: Simulation Models, Macroscopic Flow Relationships, and Flow Estimation and Prediction
(
National Academy of Science
,
Washington
,
DC
,
1998
), pp.
29
36
.
6.
A.
Varas
,
M. D.
Cornejo
,
D.
Mainemer
,
B.
Toledo
,
J.
Rogan
,
V.
Munoz
, and
J. A.
Valdivia
,
Physica A
382
,
631
(
2007
).
7.
K. K.
Huang
,
X. P.
Zheng
,
Y.
Cheng
, and
Y. Q.
Yang
,
Appl. Math. Comput.
292
,
417
(
2017
).
8.
X. M.
Zhou
,
J. J.
Hu
,
X. F.
Ji
, and
X. Z. Y.
Xiao
,
Physica A
514
,
982
(
2019
).
9.
D.
Helbing
and
P.
Molnár
Phys. Rev. E.
51
,
4282
(
1995
).
10.
D.
Helbing
,
I. J.
Farkas
,
P.
Molnar
, and
T.
Vicsek
, in
Pedestrian and Evacuation Dynamics
, edited by
M.
Schreckenberg
and
S. D.
Sharma
(
Springer-Verlag
,
Berlin
,
2002
), pp.
21
58
.
11.
Z. X.
Kang
,
L.
Zhang
, and
K.
Li
,
Appl. Math. Comput.
348
,
355
(
2019
).
12.
N.
Guo
,
R.
Jiang
,
Q.-Y.
Hao
,
M.-B.
Hu
, and
B.
Jia
,
Transportmetrica B
7
,
897
(
2018
).
13.
D.
Helbing
,
I.
Farkas
, and
T.
Vicsek
,
Nature
407
,
487
(
2000
).
14.
X.
Chen
,
M.
Treiber
,
V.
Kanagaraj
, and
H.
Li
,
Transp. Rev.
38
,
625
(
2017
).
15.
Q. R.
Li
,
Y. C.
Gao
,
L.
Chen
, and
Z.
Kang
,
Physica A
533
,
122068
(
2019
).
16.
K.
Li
,
Z. X.
Kang
, and
L.
Zhang
,
Europhys. Lett.
124
,
68002
(
2018
).
17.
D. R.
Parisi
,
M.
Gilman
, and
H.
Moldovan
,
Physica A
388
,
3600
(
2009
).
18.
P. K.
Shukla
,
Masters thesis
,
Indian Institute of Technology Kanpur
,
2005
.
19.
P. A.
Langston
,
R.
Masling
, and
B. N.
Asmar
,
Saf. Sci.
44
,
395
(
2006
).
20.
J.
Zhang
,
W.
Klingsch
,
A.
Schadschneider
, and
A.
Seyfried
,
J. Stat. Mech.
2012
,
P02002
(
2012
).
21.
S. P.
Hoogendoorn
and
W.
Daamen
,
Transp. Sci.
39
,
147
(
2005
).
22.
M.
Moussaïd
,
N.
Perozo
,
S.
Garnier
,
D.
Helbing
,
G.
Theraulaz
, and
G.
Chirico
,
PLoS ONE
5
,
e10047
(
2010
).
23.
A.
Smith
,
C.
James
,
R.
Jones
,
P.
Langston
,
E.
Lester
, and
J.
Drury
,
Saf. Sci.
47
,
395
(
2009
).
24.
A.
Seyfried
,
B.
Steffen
, and
T.
Lippert
,
Physica A
368
,
232
(
2006
).
25.
L.
Shan-shan
,
Q.
Da-lin
, and
W.
Jiu-zhou
,
J. Jilin Univ.
42
,
623
(
2012
).
26.
W.
Zeng
,
P.
Chen
,
H.
Nakamura
, and
M.
Iryo-Asano
,
Transport. Res. C-Emer.
40
,
143
(
2014
).
27.
B. K.
Wang
,
Z. H.
Pei
, and
L.
Wang
,
Europhys. Lett.
107
,
58006
(
2014
).
28.
C. Y.
Zhang
,
J. L.
Zhang
, and
F. J.
Weissing
,
EPL
106
,
18007
(
2014
).
29.
A.
Szolnoki
,
M.
Mobilia
,
L. L.
Jiang
,
B.
Szczesny
,
A. M.
Rucklidge
, and
M.
Perc
,
J. R. Soc. Interface
11
,
20140735
(
2014
).
30.
Y. L.
Zhang
,
F.
Fu
,
X. J.
Chen
,
G. M.
Xie
, and
L.
Wang
,
Sci. Rep.
5
,
17446
(
2015
).
31.
K.
Li
,
R.
Cong
,
T.
Wu
, and
L.
Wang
,
Phys. Rev. E
91
,
042810
(
2015
).
32.
R.
Cong
,
B.
Wu
,
Y.
Qiu
, and
L.
Wang
,
PLoS ONE
7
,
e35776
(
2012
).
33.
A.
Szolnoki
and
M.
Perc
,
Phys. Rev. X 
7
,
041027
(
2017
).
34.
Z. H.
Pei
,
B. K.
Wang
, and
J. M.
Du
,
New J. Phys.
19
,
013037
(
2017
).
35.
K.
Li
,
A.
Szolnoki
,
R.
Cong
, and
L.
Wang
,
Sci. Rep.
6
,
21104
(
2016
).
36.
C.
Castellano
,
S.
Fortunato
, and
V.
Loreto
,
Rev. Mod. Phys.
81
,
591
(
2009
).
37.
J. Q.
Li
,
C. Y.
Zhang
,
Q. L.
Sun
, and
Z. Q.
Chen
,
Chaos Soliton. Fract.
77
,
253
(
2015
).
38.
X. J.
Chen
and
A.
Szolnoki
,
PLoS Comput. Biol.
14
,
e1006347
(
2018
).
39.
Y. L.
Zhang
and
F.
Fu
,
PLoS ONE
13
,
e0196524
(
2018
).
40.
M.
Perc
,
J. J.
Jordan
,
D. G.
Rand
,
Z.
Wang
,
S.
Boccaletti
, and
A.
Szolnoki
,
Phys. Rep.
687
,
1
(
2017
).
You do not currently have access to this content.