Stochastic evolution of various dynamic systems and reaction networks is commonly described in terms of noise assisted escape of an overdamped particle from a potential well, as devised by the paradigmatic Langevin equation in which additive Gaussian stochastic force reproduces effects of thermal fluctuations from the reservoir. When implemented for systems close to equilibrium, the approach correctly explains the emergence of the Boltzmann distribution for the ensemble of trajectories generated by the Langevin equation and relates the intensity of the noise strength to the mobility. This scenario can be further generalized to include effects of non-Gaussian, burstlike forcing modeled by Lévy noise. In this case, however, the pulsatile additive noise cannot be treated as the internal (thermal) since the relation between the strength of the friction and variance of the noise is violated. Heavy tails of Lévy noise distributions not only facilitate escape kinetics, but also, more importantly, change the escape protocol by altering the final stationary state to a non-Boltzmann, nonequilibrium form. As a result, contrary to the kinetics induced by a Gaussian white noise, escape rates in environments with Lévy noise are determined not by the barrier height, but instead by the barrier width. We further discuss consequences of simultaneous action of thermal and Lévy noises on statistics of passage times and population of reactants in double-well potentials.

1.
On Growth and Form: Fractal and Non-Fractal Patterns in Physics, edited by H. E. Stanley and N. Ostrowsky (Springer Verlag, Berlin, 1986).
2.
R. N.
Mantegna
and
H. E.
Stanley
,
An Introduction to Econophysics: Correlations and Complexity in Finance
(
Cambridge University Press
,
Cambridge
,
2000
).
3.
M. E. J.
Newman
and
G. T.
Barkema
,
Monte Carlo Methods in Statistical Physics
(
Clarendon Press
,
Oxford
,
1999
).
4.
P. D.
Ditlevsen
,
Phys. Rev. E
60
,
172
(
1999
).
5.
J. P.
Bouchaud
and
A.
Georges
,
Phys. Rep.
195
,
127
(
1990
).
6.
M. F.
Shlesinger
,
J.
Klafter
, and
B. J.
West
,
Physica A
140
,
212
(
1986
).
7.
J. P.
Bouchaud
,
A.
Ott
,
D.
Langevin
, and
W.
Urbach
,
J. Phys. II
1
,
1465
(
1991
).
8.
P.
Barthelemy
,
J.
Bertolotti
, and
D.
Wiersma
,
Nature (London)
453
,
495
(
2008
).
9.
M.
Mercadier
,
W.
Guerin
,
M. M.
Chevrollier
, and
R.
Kaiser
,
Nat. Phys.
5
,
602
(
2009
).
10.
F.
Bardou
,
J. P.
Bouchaud
,
A.
Aspect
, and
C.
Cohen-Tannoudji
,
Lévy Statistics and Laser Cooling
(
Cambridge University Press
,
Cambridge
,
2002
).
11.
E.
Barkai
,
E.
Aghion
, and
D. A.
Kessler
,
Phys. Rev. X
4
,
021036
(
2014
).
12.
T. A.
Amor
,
S. D. S.
Reis
,
D.
Campos
,
H. J.
Herrmann
, and
J. S.
Andrade
,
Sci. Rep.
6
,
20815
(
2016
).
13.
A. M.
Reynolds
and
M. A.
Frye
,
PLoS One
2
,
e354
(
2007
).
14.
R.
Metzler
and
J.
Klafter
,
Phys. Rep.
339
,
1
(
2000
).
15.
16.
V. V.
Anh
and
R.
McVinish
,
J. Appl. Math. Stoch. Anal.
16
,
97
(
2003
).
17.
D.
Brockmann
and
I. M.
Sokolov
,
Chem. Phys.
284
,
409
(
2002
).
18.
A. V.
Chechkin
,
V. Y.
Gonchar
,
J.
Klafter
, and
R.
Metzler
, in Fractals, Diffusion, and Relaxation in Disordered Complex Systems: Advances in Chemical Physics, Part B, edited by W. T. Coffey and Y. P. Kalmykov (John Wiley & Sons, New York, 2006), Vol. 133, pp. 439–496.
19.
S.
Jespersen
,
R.
Metzler
, and
H. C.
Fogedby
,
Phys. Rev. E
59
,
2736
(
1999
).
20.
V. V.
Yanovsky
,
A. V.
Chechkin
,
D.
Schertzer
, and
A. V.
Tur
,
Physica A
282
,
13
(
2000
).
21.
D.
Schertzer
,
M.
Larchevêque
,
J.
Duan
,
V. V.
Yanovsky
, and
S.
Lovejoy
,
J. Math. Phys.
42
,
200
(
2001
).
22.
P.
Garbaczewski
and
V.
Stephanovich
,
Phys. Rev. E
84
,
011142
(
2011
).
23.
Ł.
Kuśmierz
,
A.
Chechkin
,
E.
Gudowska-Nowak
, and
M.
Bier
,
Europhys. Lett.
114
,
60009
(
2016
).
24.
B.
Dybiec
,
E.
Gudowska-Nowak
, and
I. M.
Sokolov
,
Phys. Rev. E
78
,
011117
(
2008
).
25.
M. O.
Magnasco
,
Phys. Rev. Lett.
71
,
1477
(
1993
).
27.
P.
Imkeller
,
I.
Pavlyukevich
, and
T.
Wetzel
,
Eur. Phys. J. Spec. Top.
191
,
211
(
2010
).
28.
R. M.
Blumenthal
,
R. K.
Getoor
, and
D. B.
Ray
,
Trans. Am. Math. Soc.
99
,
540
(
1961
).
29.
R. K.
Getoor
,
Trans. Am. Math. Soc.
101
,
75
(
1961
).
30.
M.
Kac
and
H.
Pollard
,
Can. J. Math.
2
,
375
(
1950
).
31.
32.
33.
H. A.
Kramers
,
Physica (Utrecht)
7
,
284
(
1940
).
34.
I.
Pagonabarraga
,
A.
Pérez-Madrid
, and
J. M.
Rubi
,
Physica A
237
,
205
(
1997
).
35.
P.
Imkeller
and
I.
Pavlyukevich
,
Stoch. Process. Appl.
116
,
611
(
2006
).
36.
P.
Imkeller
and
I.
Pavlyukevich
,
J. Phys. A Math. Gen.
39
,
L237
(
2006
).
37.
A.
Janicki
and
A.
Weron
,
Stat. Sci.
9
,
109
(
1994
).
38.
J. M.
Chambers
,
C. L.
Mallows
, and
B. W.
Stuck
,
J. Am. Stat. Assoc.
71
,
340
(
1976
).
39.
A.
Weron
and
R.
Weron
,
Lect. Notes Phys.
457
,
379
(
1995
).
40.
R.
Weron
,
Stat. Probab. Lett.
28
,
165
(
1996
).
41.
A.
Janicki
and
A.
Weron
, Simulation and Chaotic Behavior of α-stable Stochastic Processes (
Marcel Dekker
,
New York
,
1994
).
42.
A.
Janicki
,
Numerical and Statistical Approximation of Stochastic Differential Equations with Non-Gaussian Measures
(
Hugo Steinhaus Centre for Stochastic Methods
,
Wrocław
,
1996
).
43.
D. T.
Gillespie
,
Am. J. Phys.
64
,
225
(
1996
).
45.
P.
Hänggi
,
P.
Talkner
, and
M.
Borkovec
,
Rev. Mod. Phys.
62
,
251
(
1990
).
46.
C. W.
Gardiner
,
Handbook of Stochastic Methods for Physics, Chemistry and Natural Sciences
(
Springer Verlag
,
Berlin
,
2009
).
47.
A. V.
Chechkin
,
O. Y.
Sliusarenko
,
R.
Metzler
, and
J.
Klafter
,
Phys. Rev. E
75
,
041101
(
2007
).
48.
A. V.
Chechkin
,
V. Y.
Gonchar
,
J.
Klafter
, and
R.
Metzler
,
Europhys. Lett.
72
,
348
(
2005
).
49.
A. V.
Chechkin
,
J.
Klafter
,
V. Y.
Gonchar
,
R.
Metzler
, and
L. V.
Tanatarov
,
Chem. Phys.
284
,
233
(
2002
).
50.
A. V.
Chechkin
,
J.
Klafter
,
V. Y.
Gonchar
,
R.
Metzler
, and
L. V.
Tanatarov
,
Phys. Rev. E
67
,
010102(R)
(
2003
).
51.
A. V.
Chechkin
,
V. Y.
Gonchar
,
J.
Klafter
,
R.
Metzler
, and
L. V.
Tanatarov
,
J.~Stat. Phys.
115
,
1505
(
2004
).
52.
B.
Dybiec
,
A. V.
Chechkin
, and
I. M.
Sokolov
,
J. Stat. Mech.
2010
,
P07008
(
2010
).
53.
A.
Vezzani
,
E.
Barkai
, and
R.
Burioni
,
Phys. Rev. E
100
,
012108
(
2019
).
54.
M.
Cieśla
,
K.
Capała
, and
B.
Dybiec
,
Phys. Rev. E
99
,
052118
(
2019
).
55.
W.
Ebeling
and
M. Y.
Romanovsky
,
Contrib. Plasma Phys.
49
,
477
(
2009
).
56.
W.
Ebeling
,
M. Y.
Romanovsky
,
I.
Sokolov
, and
I.
Valuev
,
Eur. Phys. J. Spec. Top.
187
,
157
(
2010
).
57.
Ł.
Kuśmierz
,
B.
Dybiec
, and
E.
Gudowska-Nowak
,
Entropy
20
,
658
(
2018
).
58.
Ł.
Kuśmierz
,
J. M.
Rubi
, and
E.
Gudowska-Nowak
,
J. Stat. Mech.
2014
,
P09002
(
2014
).
59.
K.
Kanazawa
,
T. G.
Sano
,
T.
Sagawa
, and
H.
Hayakawa
,
Phys. Rev. Lett.
114
,
090601
(
2015
).
60.
M.
Bier
and
R. D.
Astumian
,
Phys. Lett. A
247
,
385
(
1998
).
61.
B.
Dybiec
,
E.
Gudowska-Nowak
, and
P.
Hänggi
,
Phys. Rev. E
75
,
021109
(
2007
).
62.
A.
Baronchelli
and
F.
Radicchi
,
Chaos Solitons Fractals
56
,
101
(
2013
).
63.
X.
Chen
,
F.
Wu
,
J.
Duan
,
J.
Kurths
, and
X.
Lie
,
Appl. Math. Comp.
348
,
425
(
2019
).
64.
J.
Noetel
,
V. L. S.
Freitas
,
E. E. N.
Macau
, and
L.
Schimansky-Geier
,
Chaos
28
,
106302
(
2018
).
65.
K.
Szczepaniec
and
B.
Dybiec
,
J. Stat. Mech.
2015
,
P06031
(
2015
).
66.
A. P.
Riascos
and
J. L.
Mateos
,
Phys. Rev. E
90
,
032801
(
2014
).
67.
A.
Karlova
and
P.
Hagan
,
Wilmott
2016
,
42
69
(
2016
).
You do not currently have access to this content.