Nonlinear dynamical systems often generate significant amounts of observational data such as time series, as well as high-dimensional spatial data. To delineate recurrence dynamics in the spatial data, prior efforts either extended the recurrence plot, which is a widely used tool for time series, to a four-dimensional hyperspace or utilized the network approach for recurrence analysis. However, very little has been done to differentiate heterogeneous types of recurrences in the spatial data (e.g., recurrence variations of state transitions in the spatial domain). Therefore, we propose a novel heterogeneous recurrence approach for spatial data analysis. First, spatial data are traversed with the Hilbert Space-Filling Curve to transform the variations of recurrence patterns from the spatial domain to the state-space domain. Second, we design an Iterated Function System to derive the fractal representation for the state-space trajectory of spatial data. Such a fractal representation effectively captures self-similar behaviors of recurrence variations and multi-state transitions in the spatial data. Third, we develop the Heterogeneous Recurrence Quantification Analysis of spatial data. Experimental results in both simulation and real-world case studies show that the proposed approach yields superior performance in the extraction of salient features to characterize and quantify heterogeneous recurrence dynamics in spatial data.

1.
N.
Marwan
, “
A historical review of recurrence plots
,”
Eur. Phys. J. Spec. Top.
164
,
3
12
(
2008
).
2.
N.
Boers
,
B.
Bookhagen
,
H. M. J.
Barbosa
,
N.
Marwan
,
J.
Kurths
, and
J. A.
Marengo
, “
Prediction of extreme floods in the eastern central Andes based on a complex networks approach
,”
Nat. Commun.
5
,
5199
(
2014
).
3.
A.
Facchini
,
C.
Mocenni
,
N.
Marwan
,
A.
Vicino
, and
E.
Tiezzi
, “
Nonlinear time series analysis of dissolved oxygen in the Orbetello Lagoon (Italy)
,”
Ecol. Model.
203
(
3–4
),
339
348
(
2007
).
4.
Y.
Chen
and
H.
Yang
, “
Multiscale recurrence analysis of long-term nonlinear and nonstationary time series
,”
Chaos Solitons Fractals
45
(
7
),
978
987
(
2012
).
5.
H.
Yang
, “
Multiscale recurrence quantification analysis of spatial cardiac vectorcardiogram signals
,”
IEEE Trans. Biomed. Eng.
58
(
2
),
339
347
(
2011
).
6.
C.
Kan
,
C.
Cheng
, and
H.
Yang
, “
Heterogeneous recurrence monitoring of dynamic transients in ultraprecision machining processes
,”
J. Manuf. Syst.
41
,
178
187
(
2016
).
7.
H.
Yang
,
S. T. S.
Bukkapatnam
, and
L. G.
Barajas
, “
Local recurrence based performance prediction and prognostics in the nonlinear and nonstationary systems
,”
Pattern Recognit.
44
(
8
),
1834
1840
(
2011
).
8.
N.
Marwan
,
M.
Carmen Romano
,
M.
Thiel
, and
J.
Kurths
, “
Recurrence plots for the analysis of complex systems
,”
Phys. Rep.
438
(
5–6
),
237
329
(
2007
).
9.
J.-P.
Eckmann
,
S. O.
Kamphorst
, and
D.
Ruelle
, “
Recurrence plots of dynamical systems
,”
Europhys. Lett.
4
(
9
),
973
977
(
1987
).
10.
N.
Marwan
,
N.
Wessel
,
U.
Meyerfeldt
,
A.
Schirdewan
, and
J.
Kurths
, “
Recurrence plot based measures of complexity and its application to heart rate variability data
,”
Phys. Rev. E
66
(
2
),
026702
(
2002
).
11.
H.
Yang
and
Y.
Chen
, “
Heterogeneous recurrence monitoring and control of nonlinear stochastic processes
,”
Chaos
24
(
1
),
013138
(
2014
).
12.
C.
Cheng
,
C.
Kan
, and
H.
Yang
, “
Heterogeneous recurrence analysis of heartbeat dynamics for the identification of sleep apnea events
,”
Comput. Biol. Med.
75
,
10
18
(
2016
).
13.
Y.
Chen
and
H.
Yang
, “
Heterogeneous recurrence representation and quantification of dynamic transitions in continuous nonlinear processes
,”
Eur. Phys. J. B
89
(
6
),
155
(
2016
).
14.
R.
Chen
,
F.
Imani
, and
H.
Yang
, “
Heterogeneous recurrence analysis of disease-altered spatiotemporal patterns in multi-channel cardiac signals
,”
IEEE J. Biomed. Health Inf.
(
2019
).
15.
M. V.
Caballero-Pintado
,
M.
Matilla-García
, and
M.
Ruiz Marín
, “
Symbolic recurrence plots to analyze dynamical systems
,”
Chaos
28
(
6
),
063112
(
2018
).
16.
M.
Porfiri
and
M.
Ruiz Marín
, “
Transfer entropy on symbolic recurrences
,”
Chaos
29
(
6
),
063123
(
2019
).
17.
B. B.
Mandelbrot
,
D. E.
Passoja
, and
A. J.
Paullay
, “
Fractal character of fracture surfaces of metals
,”
Nature
308
(
5961
),
721
722
(
1984
).
18.
C.
Kan
and
H.
Yang
, “
Dynamic network monitoring and control of high-dimensional imaging profiles
,”
Qual. Reliab. Eng. Int.
33
(
8
),
2003
2022
(
2017
).
19.
D. B.
Vasconcelos
,
S. R.
Lopes
,
R. L.
Viana
, and
J.
Kurths
, “
Spatial recurrence plots
,”
Phys. Rev. E
73
(
5
),
056207
(
2006
).
20.
T. L.
Prado
,
P. P.
Galuzio
,
S. R.
Lopes
, and
R. L.
Viana
, “
Spatial recurrence analysis: A sensitive and fast detection tool in digital mammography
,”
Chaos
24
(
1
),
013106
(
2014
).
21.
N.
Marwan
,
J.
Kurths
, and
S.
Foerster
, “
Analysing spatially extended high-dimensional dynamics by recurrence plots
,”
Phys. Lett.
379
(
10–11
),
894
900
(
2015
).
22.
C.-B.
Chen
,
H.
Yang
, and
S.
Kumara
, “
Recurrence network modeling and analysis of spatial data
,”
Chaos
28
(
8
),
085714
(
2018
).
23.
R. V.
Donner
,
Y.
Zou
,
J. F.
Donges
,
N.
Marwan
, and
J.
Kurths
, “
Recurrence networks—A novel paradigm for nonlinear time series analysis
,”
New J. Phys.
12
,
033025
(
2010
).
24.
R. V.
Donner
 et al, “
Recurrence-based time series analysis by means of complex network methods
,”
Int. J. Bifurcat. Chaos
21
,
1019
(
2011
).
25.
B.
Moon
,
H. V.
Jagadish
,
C.
Faloutsos
, and
J. H.
Saltz
, “
Analysis of the clustering properties of the Hilbert space-filling curve
,”
IEEE Trans. Knowl. Data Eng.
13
(
1
),
124
141
(
2001
).
26.
J.
Alber
and
R.
Niedermeier
, “
On multidimensional curves with Hilbert property
,”
Theory Comput. Syst.
33
(
4
),
295
312
(
2000
).
27.
P.
Xu
and
S.
Tirthapura
, “
Optimality of clustering properties of space filling curves
,”
ACM Trans. Database Syst.
39
(
2
),
10
(
2014
).
28.
T.
Asano
,
D.
Ranjan
,
T.
Roos
,
E.
Welzl
, and
P.
Widmayer
, “
Space-filling curves and their use in the design of geometric data structures
,”
Theor. Comput. Sci.
181
(
1
),
3
15
(
1997
).
29.
Y.
Chen
and
H.
Yang
, “
Heterogeneous recurrence T-squared charts for monitoring and control of nonlinear dynamic processes
,” in
2015 IEEE International Conference on Automation Science and Engineering (CASE)
(
IEEE
,
2015
), pp.
1066
1071
.
30.
S. S.
Joshi
, “
Ultraprecision machining (UPM)
,” in
Encyclopedia of Nanotechnology
(
Springer Netherlands
,
Dordrecht
,
2016
), pp.
4253
4260
.
You do not currently have access to this content.