Machine Learning (ML) inspired algorithms provide a flexible set of tools for analyzing and forecasting chaotic dynamical systems. We analyze here the performance of one algorithm for the prediction of extreme events in the two-dimensional Hénon map at the classical parameters. The task is to determine whether a trajectory will exceed a threshold after a set number of time steps into the future. This task has a geometric interpretation within the dynamics of the Hénon map, which we use to gauge the performance of the neural networks that are used in this work. We analyze the dependence of the success rate of the ML models on the prediction time T, the number of training samples NT, and the size of the network Np. We observe that in order to maintain a certain accuracy, NTexp(2hT) and Npexp(hT), where h is the topological entropy. Similar relations between the intrinsic chaotic properties of the dynamics and ML parameters might be observable in other systems as well.

1.
D.
Silver
,
J.
Schrittwieser
,
K.
Simonyan
,
I.
Antonoglou
,
A.
Huang
,
A.
Guez
,
T.
Hubert
,
L.
Baker
,
M.
Lai
,
A.
Bolton
,
Y.
Chen
,
T.
Lillicrap
,
F.
Hui
,
L.
Sifre
,
G.
van den Driessche
,
T.
Graepel
, and
D.
Hassabis
,
Nature
550
,
354
(
2017
).
2.
M.
Schuld
,
I.
Sinayskiy
, and
F.
Petruccione
,
Physics
12
,
74
(
2019
).
3.
H.
Jeckel
,
E.
Jelli
,
R.
Hartmann
,
P. K.
Singh
,
R.
Mok
,
J. F.
Totz
,
L.
Vidakovic
,
B.
Eckhardt
,
J.
Dunkel
, and
K.
Drescher
,
Proc. Nat. Acad. Sci. U.S.A.
116
,
1489
(
2019
).
4.
J.
Carrasquilla
and
R. G.
Melko
,
Nat. Phys.
13
,
431
(
2017
).
5.
K. T.
Butler
,
D. W.
Davies
,
H.
Cartwright
,
O.
Isayev
, and
A.
Walsh
,
Nature
559
,
547
(
2018
).
6.
S.
Brunton
,
B.
Noack
, and
P.
Koumoutsakos
, preprint arXiv:1905.11075 (2019).
7.
K.
Champion
,
P.
Zheng
,
A. Y.
Aravkin
,
S. L.
Brunton
, and
J. N.
Kutz
, e-print arXiv:1906.10612v1 (2019).
8.
E.
Ott
,
Chaos in Dynamical Systems
, 2nd ed. (
Cambridge University Press
,
2002
).
9.
A. S.
Weigend
,
B. A.
Huberman
, and
D. E.
Rumelhart
,
Int. J. Neural Syst.
01
,
193
(
1990
).
10.
S.
Mukherjee
,
E.
Osuna
, and
F.
Girosi
,
in
Neural Networks for Signal Processing VII. Proceedings of the 1997 IEEE Signal Processing Society Workshop
(
IEEE
,
1997
), pp.
511
520
.
11.
G.
Bontempi
,
S.
Ben Taieb
, and
Y.-A.
Le Borgne
, “
Machine learning strategies for time series forecasting
,”
in
Business Intelligence: Second European Summer School, eBISS 2012, Brussels, Belgium, 15–21 July 2012, Tutorial Lectures
,
edited by
M.-A.
Aufaure
and
E.
Zimányi
(
Springer
,
2013
), pp.
62
77
.
12.
J.
Pathak
,
B.
Hunt
,
M.
Girvan
,
Z.
Lu
, and
E.
Ott
,
Phys. Rev. Lett.
120
,
024102
(
2018
).
13.
J.
Pathak
,
Z.
Lu
,
B. R.
Hunt
,
M.
Girvan
, and
E.
Ott
,
Chaos
27
,
121102
(
2017
).
15.
B.
Hof
,
J.
Westerweel
,
T. M.
Schneider
, and
B.
Eckhardt
,
Nature
443
,
59
(
2006
).
16.
B.
Eckhardt
,
T. M.
Schneider
,
B.
Hof
, and
J.
Westerweel
,
Annu. Rev. Fluid Mech.
39
,
447
(
2007
).
18.
P. A.
Srinivasan
,
L.
Guastoni
,
H.
Azizpour
,
P.
Schlatter
, and
R.
Vinuesa
,
Phys. Rev. Fluids
4
,
054603
(
2019
).
19.
M.
Hénon
,
Comm. Math. Phys.
50
,
69
(
1976
).
20.
R.
Artuso
,
E.
Aurell
, and
P.
Cvitanovic
,
Nonlinearity
3
,
361
(
1990
).
21.
T. M.
Schneider
and
B.
Eckhardt
,
Phil. Trans. R. Soc. A
367
,
577
(
2009
).
22.
I.
Goodfellow
,
Y.
Bengio
, and
A.
Courville
,
Deep Learning
(
MIT Press
,
2016
).
23.
J.
Heaton
,
Introduction to Neural Networks with Java
(
Heaton Research, Inc.
,
2008
).
24.
D. P.
Kingma
and
J.
Ba
, preprint arXiv:1412.6980 (
2014
).
25.
H.
He
and
E. A.
Garcia
,
IEEE Trans. Knowl. Data Eng.
21
,
1263
(
2009
).
You do not currently have access to this content.