The concept of reservoir computing emerged from a specific machine learning paradigm characterized by a three-layered architecture (input, reservoir, and output), where only the output layer is trained and optimized for a particular task. In recent years, this approach has been successfully implemented using various hardware platforms based on optoelectronic and photonic systems with time-delayed feedback. In this review, we provide a survey of the latest advances in this field, with some perspectives related to the relationship between reservoir computing, nonlinear dynamics, and network theory.

1.
P.
Mehta
,
M.
Bukov
,
C.-H.
Wanga
,
A. G. R.
Day
,
C.
Richardson
,
C. K.
Fisher
, and
D. J.
Schwab
, “
A high-bias, low-variance introduction to machine learning for physicists
,”
Phys. Rep.
810
,
1
124
(
2019
).
2.
D.
Silver
,
J.
Schrittwieser
,
K.
Simonyan
,
I.
Antonoglou
,
A.
Huang
,
A.
Guez
,
T.
Hubert
,
L.
Baker
,
M.
Lai
,
A.
Bolton
,
Y.
Chen
,
T.
Lillicrap
,
F.
Hui
,
L.
Sifre
,
G.
van den Driessche
,
T.
Graepel
, and
D.
Hassabis
, “
Mastering the game of Go without human knowledge
,”
Nature
550
,
354
359
(
2017
).
3.
D.
Silver
,
T.
Hubert
,
J.
Schrittwieser
,
I.
Antonoglou
,
M.
Lai
,
A.
Guez
,
M.
Lanctot
,
L.
Sifre
,
D.
Kumaran
,
T.
Graepel
,
T.
Lillicrap
,
K.
Simonyan
, and
D.
Hassabis
, “
A general reinforcement learning algorithm that masters Chess, Shogi, and Go through self-play
,”
Science
362
,
1140
1144
(
2018
).
4.
W.
Maass
,
T.
Natschläger
, and
H.
Markram
, “
Real-time computing without stable states: A new framework for neural computation based on perturbations
,”
Neural Comput.
14
,
2531
2560
(
2002
).
5.
H.
Jaeger
and
H.
Haas
, “
Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
,”
Science
304
,
78
80
(
2004
).
6.
D.
Verstraeten
,
B.
Schrauwen
,
M.
D’Haene
, and
D.
Stroobandt
, “
An experimental unification of reservoir computing methods
,”
Neural Netw.
20
,
391
403
(
2007
).
7.
M.
Lukosevicius
and
H.
Jaeger
, “
Reservoir computing approaches to recurrent neural network training
,”
Comput. Sci. Rev.
3
,
127
149
(
2009
).
8.
G.
Tanaka
,
T.
Yamane
,
J. B.
Héroux
,
R.
Nakane
,
N.
Kanazawa
,
S.
Takeda
,
H.
Numata
,
D.
Nakano
, and
A.
Hirose
, “
Recent advances in physical reservoir computing: A review
,”
Neural Netw.
115
,
100
123
(
2019
).
9.
F. T.
Arecchi
,
G.
Giacomelli
,
A.
Lapucci
, and
R.
Meucci
, “
Two-dimensional representation of a delayed dynamical system
,”
Phys. Rev. A
45
,
R4225
R4228
(
1992
).
10.
S.
Yanchuk
and
G.
Giacomelli
, “
Spatio-temporal phenomena in complex systems with time delays
,”
J. Phys. A
50
,
103001
(
2017
).
11.
L.
Appeltant
,
M. C.
Soriano
,
G. V.
der Sande
,
J.
Danckaert
,
S.
Massar
,
J.
Dambre
,
B.
Schrauwen
,
C. R.
Mirasso
, and
I.
Fischer
, “
Information processing using a single dynamical node as complex system
,”
Nat. Commun.
2
,
468
(
2011
).
12.
G.
Van der Sande
,
D.
Brunner
, and
M. C.
Soriano
, “
Advances in photonic reservoir computing
,”
Nanophotonics
6
,
561
576
(
2017
).
13.
D.
Brunner
,
B.
Penkovsky
,
B. A.
Marquez
,
M.
Jacquot
,
I.
Fischer
, and
L.
Larger
, “
Tutorial: Photonic neural networks in delay systems
,”
J. Appl. Phys.
124
,
152004
(
2018
).
14.
P.
Antonik
,
F.
Duport
,
M.
Hermans
,
A.
Smerieri
,
M.
Haelterman
, and
S.
Massar
, “
Online training of an opto-electronic reservoir computer applied to real-time channel equalization
,”
IEEE Trans. Neural Netw. Learn. Syst.
28
,
2686
2698
(
2016
).
15.
F.
Duport
,
A.
Smerieri
,
A.
Akrout
,
M.
Haelterman
, and
S.
Massar
, “
Virtualization of a photonic reservoir computer
,”
IEEE/OSA J. Lightw. Technol.
34
,
2085
2091
(
2016
).
16.
F.
Duport
,
A.
Smerieri
,
A.
Akrout
,
M.
Haelterman
, and
S.
Massar
, “
Fully analogue photonic reservoir computer
,”
Sci. Rep.
6
,
22381
(
2016
).
17.
M.
Hermans
,
P.
Antonik
,
M.
Haelterman
, and
S.
Massar
, “
Embodiment of learning in electro-optical signal processors
,”
Phys. Rev. Lett.
117
,
128301
(
2016
).
18.
L.
Larger
,
M. C.
Soriano
,
D.
Brunner
,
L.
Appeltant
,
J. M.
Gutierrez
,
L.
Pesquera
,
C. R.
Mirasso
, and
I.
Fischer
, “
Photonic information processing beyond Turing: An optoelectronic implementation of reservoir computing
,”
Opt. Express
20
,
3241
3249
(
2012
).
19.
L.
Larger
,
A.
Baylón-Fuentes
,
R.
Martinenghi
,
V. S.
Udaltsov
,
Y. K.
Chembo
, and
M.
Jacquot
, “
High-speed photonic reservoir computing using a time-delay-based architecture: Million words per second classification
,”
Phys. Rev. X
7
,
011015
(
2017
).
20.
R.
Martinenghi
,
S.
Rybalko
,
M.
Jacquot
,
Y. K.
Chembo
, and
L.
Larger
, “
Photonic nonlinear transient computing with multiple-delay wavelength dynamics
,”
Phys. Rev. Lett.
108
,
244101
(
2012
).
21.
S.
Ortín
,
M. C.
Soriano
,
L.
Pesquera
,
D.
Brunner
,
D.
San-Martín
,
I.
Fischer
,
C. R.
Mirasso
, and
J. M.
Gutiérrez
, “
A unified framework for reservoir computing and extreme learning machines based on a single time-delayed neuron
,”
Sci. Rep.
5
,
14945
(
2015
).
22.
Y.
Paquot
,
F.
Duport
,
A.
Smerieri
,
J.
Dambre
,
B.
Schrauwen
,
M.
Haelterman
, and
S.
Massar
, “
Optoelectronic reservoir computing
,”
Sci. Rep.
2
,
287
(
2012
).
23.
J.
Qin
,
Q.
Zhao
,
H.
Yin
,
Y.
Jin
, and
C.
Liu
, “
Numerical simulation and experiment on optical packet header recognition utilizing reservoir computing based on optoelectronic feedback
,”
IEEE Photonics J.
9
,
7901311
(
2017
).
24.
M. C.
Soriano
,
S.
Ortín
,
D.
Brunner
,
L.
Larger
,
C. R.
Mirasso
,
I.
Fischer
, and
L.
Pesquera
, “
Optoelectronic reservoir computing: Tackling noise-induced performance degradation
,”
Opt. Express
21
,
12
20
(
2013
).
25.
Y. K.
Chembo
,
D.
Brunner
,
M.
Jacquot
, and
L.
Larger
, “
Optoelectronic oscillators with time-delayed feedback
,”
Rev. Mod. Phys.
91
,
035006
(
2019
).
26.
L.
Larger
, “
Complexity in electro-optic delay dynamics: Modelling, design and applications
,”
Philos. Trans. R. Soc. A
371
,
20120464
(
2013
).
27.
L.
Illing
and
D. J.
Gauthier
, “
Hopf bifurcations in time-delay systems with band-limited feedback
,”
Physica D
210
,
180
202
(
2005
).
28.
A. B.
Cohen
,
B.
Ravoori
,
T. E.
Murphy
, and
R.
Roy
, “
Using synchronization for prediction of high-dimensional chaotic dynamics
,”
Phys. Rev. Lett.
101
,
154102
(
2008
).
29.
T. E.
Murphy
,
A. B.
Cohen
,
B.
Ravoori
,
K. R. B.
Schmitt
,
A. V.
Setty
,
F.
Sorrentino
,
C. R. S.
Williams
,
E.
Ott
, and
R.
Roy
, “
Complex dynamics and synchronization of delayed-feedback nonlinear oscillators
,”
Philos. Trans. R. Soc. A
368
,
343
366
(
2010
).
30.
B.
Ravoori
,
A. B.
Cohen
,
J.
Sun
,
A. E.
Motter
,
T. E.
Murphy
, and
R.
Roy
, “
Robustness of optimal synchronization in real networks
,”
Phys. Rev. Lett.
107
,
034102
(
2011
).
31.
G. R. G.
Chengui
,
A. F.
Talla
,
J. H. T.
Mbé
,
A.
Coillet
,
K.
Saleh
,
L.
Larger
,
P.
Woafo
, and
Y. K.
Chembo
, “
Theoretical and experimental study of slow-scale Hopf limit-cycles in laser-based wideband optoelectronic oscillators
,”
J. Opt. Soc. Am. B
31
,
2310
2316
(
2014
).
32.
G. R. G.
Chengui
,
P.
Woafo
, and
Y. K.
Chembo
, “
The simplest laser-based optoelectronic oscillator: An experimental and theoretical study
,”
IEEE/OSA J. Lightw. Technol.
34
,
873
878
(
2016
).
33.
M.
Nourine
,
Y. K.
Chembo
, and
L.
Larger
, “
Wideband chaos generation using a delayed oscillator and a two-dimensional nonlinearity induced by a quadrature phase-shift-keying electro-optic modulator
,”
Opt. Lett.
36
,
2833
2835
(
2011
).
34.
L.
Weicker
,
T.
Erneux
,
O.
D’Huys
,
J.
Danckaert
,
M.
Jacquot
,
Y.
Chembo
, and
L.
Larger
, “
Strongly asymmetric square waves in a time-delayed system
,”
Phys. Rev. E
86
,
055201
(
2012
).
35.
L.
Weicker
,
T.
Erneux
,
M.
Jacquot
,
Y.
Chembo
, and
L.
Larger
, “
Crenelated fast oscillatory outputs of a two-delay electro-optic oscillator
,”
Phys. Rev. E
85
,
026206
(
2012
).
36.
L.
Weicker
,
T.
Erneux
,
O.
D’Huys
,
J.
Danckaert
,
M.
Jacquot
,
Y.
Chembo
, and
L.
Larger
, “
Slow–fast dynamics of a time-delayed electro-optic oscillator
,”
Philos. Trans. R. Soc. A
371
,
20120459
(
2013
).
37.
A. F.
Talla
,
R.
Martinenghi
,
P.
Woafo
, and
Y. K.
Chembo
, “
Breather and pulse-package dynamics in multinonlinear electrooptical systems with delayed feedback
,”
IEEE Photonics J.
8
,
7803608
(
2016
).
38.
J. H.
Talla Mbé
,
A. F.
Talla
,
G. R. G.
Chengui
,
A.
Coillet
,
L.
Larger
,
P.
Woafo
, and
Y. K.
Chembo
, “
Mixed-mode oscillations in slow-fast delayed optoelectronic systems
,”
Phys. Rev. E
91
,
012902
(
2015
).
39.
X. S.
Yao
and
L.
Maleki
, “
High frequency optical subcarrier generator
,”
Electron. Lett.
30
,
1525
1526
(
1994
).
40.
W.
Zhou
and
G.
Blasche
, “
Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level
,”
IEEE Trans. Microw. Theory Tech.
53
,
929
933
(
2005
).
41.
Y. K.
Chembo
,
L.
Larger
,
R.
Bendoula
, and
P.
Colet
, “
Effects of gain and bandwidth on the multimode behavior of optoelectronic microwave oscillators
,”
Opt. Express
16
,
9067
9072
(
2008
).
42.
L.
Maleki
, “
The optoelectronic oscillator
,”
Nat. Photonics
5
,
728
730
(
2011
).
43.
R. M.
Nguimdo
,
Y. K.
Chembo
,
P.
Colet
, and
L.
Larger
, “
On the phase noise performance of nonlinear double-loop optoelectronic microwave oscillators
,”
IEEE J. Quantum Electron.
48
,
1415
1423
(
2012
).
44.
K.
Saleh
,
R.
Henriet
,
S.
Diallo
,
G.
Lin
,
R.
Martinenghi
,
I. V.
Balakireva
,
P.
Salzenstein
,
A.
Coillet
, and
Y. K.
Chembo
, “
Phase noise performance comparison between optoelectronic oscillators based on optical delay lines and whispering gallery mode resonators
,”
Opt. Express
22
,
32158
(
2014
).
45.
K.
Saleh
,
G.
Lin
, and
Y. K.
Chembo
, “
Effect of laser coupling and active stabilization on the phase noise performance of optoelectronic microwave oscillators based on whispering-gallery-mode resonators
,”
IEEE Photonics J.
7
,
5500111
(
2015
).
46.
R. M.
Nguimdo
,
K.
Saleh
,
A.
Coillet
,
G.
Lin
,
R.
Martinenghi
, and
Y. K.
Chembo
, “
Phase noise performance of optoelectronic oscillators based on whispering-gallery mode resonators
,”
IEEE J. Quantum Electron.
51
,
6500308
(
2015
).
47.
A. F.
Talla
,
R.
Martinenghi
,
G. R. G.
Chengui
,
J. H. T.
Mbé
,
K.
Saleh
,
A.
Coillet
,
G.
Lin
,
P.
Woafo
, and
Y. K.
Chembo
, “
Analysis of phase-locking in narrow-band optoelectronic oscillators with intermediate frequency
,”
IEEE J. Quantum Electron.
51
,
5000108
(
2015
).
48.
Y. K.
Chembo
, “
Laser-based optoelectronic generation of narrowband microwave chaos for radars and radio-communication scrambling
,”
Opt. Lett.
42
,
3431
3434
(
2017
).
49.
O.
Lelièvre
,
V.
Crozatier
,
P.
Berger
,
G.
Baili
,
O.
Llopis
,
D.
Dolfi
,
P.
Nouchi
,
F.
Goldfarb
,
F.
Bretenaker
,
L.
Morvan
, and
G.
Pillet
, “
A model for designing ultralow noise single- and dual-loop 10-GHz optoelectronic oscillators
,”
IEEE/OSA J. Lightw. Technol.
35
,
4366
4374
(
2017
).
50.
A.
Ly
,
V.
Auroux
,
R.
Khayatzadeh
,
N.
Gutierrez
,
A.
Fernandez
, and
O.
Llopis
, “
Highly spectrally pure 90-GHz signal synthesis using a coupled optoelectronic oscillator
,”
IEEE Photonics Technol. Lett.
30
,
1313
1316
(
2018
).
51.
N.
Yu
,
E.
Salik
, and
L.
Maleki
, “
Ultralow-noise mode-locked laser with coupled optoelectronic oscillator configuration
,”
Opt. Lett.
30
,
1231
1233
(
2005
).
52.
Y. K.
Chembo
,
A.
Hmima
,
P.-A.
Lacourt
,
L.
Larger
, and
J. M.
Dudley
, “
Generation of ultralow jitter optical pulses using optoelectronic oscillators with time-lens soliton-assisted compression
,”
IEEE/OSA J. Lightw. Technol.
27
,
5160
5167
(
2009
).
53.
Y. C.
Kouomou
,
P.
Colet
,
N.
Gastaud
, and
L.
Larger
, “
Effect of parameter mismatch on the synchronization of chaotic semiconductor lasers with electro-optical feedback
,”
Phys. Rev. E
69
,
056226
(
2004
).
54.
Y. C.
Kouomou
,
P.
Colet
,
L.
Larger
, and
N.
Gastaud
, “
Mismatch-induced bit error rate in optical chaos communications using semiconductor lasers with electrooptical feedback
,”
IEEE J. Quantum Electron.
41
,
156
163
(
2005
).
55.
A.
Argyris
,
D.
Syvridis
,
L.
Larger
,
V.
Annovazzi-Lodi
,
P.
Colet
,
I.
Fischer
,
J.
García-Ojalvo
,
C. R.
Mirasso
,
L.
Pesquera
, and
K. A.
Shore
, “
Chaos-based communications at high bit rates using commercial fibre-optic links
,”
Nature
438
,
343
346
(
2005
).
56.
A.
Uchida
,
F.
Rogister
,
J.
García-Ojalvo
, and
R.
Roy
, “Synchronization and communication with chaotic laser systems,” in Progress in Optics, edited by E. Wolf (Elsevier, 2005), Vol. 48, pp. 203–341.
57.
R. M.
Nguimdo
,
R.
Lavrov
,
P.
Colet
,
M.
Jacquot
,
Y. K.
Chembo
, and
L.
Larger
, “
Effect of fiber dispersion on broadband chaos communications implemented by electro-optic nonlinear delay phase dynamics
,”
IEEE J. Quantum Electron.
28
,
2688
2696
(
2010
).
58.
J.
Ai
,
L.
Wang
, and
J.
Wang
, “
Secure communications of CAP-4 and OOK signals over MMF based on electro-optic chaos
,”
Opt. Lett.
42
,
3662
3665
(
2017
).
59.
J.
Oden
,
R.
Lavrov
,
Y. K.
Chembo
, and
L.
Larger
, “
Multi-Gbit/s optical phase chaos communications using a time-delayed optoelectronic oscillator with a three-wave interferometer nonlinearity
,”
Chaos
27
,
114311
(
2017
).
60.
J.
Ke
,
L.
Yi
,
G.
Xia
, and
W.
Hu
, “
Chaotic optical communications over 100-km fiber transmission at 30-Gb/s bit rate
,”
Opt. Lett.
43
,
1323
1326
(
2018
).
61.
X.
Fang
,
B.
Wetzel
,
J.-M.
Merolla
,
J. M.
Dudley
,
L.
Larger
,
C.
Guyeux
, and
J. M.
Bahi
, “
Noise and chaos contributions in fast random bit sequence generated from broadband optoelectronic entropy sources
,”
IEEE Trans. Circ. Syst. I
61
,
888
901
(
2014
).
62.
P.
Mu
,
W.
Pan
,
S.
Xiang
,
N.
Li
,
X.
Liu
, and
X.
Zou
, “
Fast physical and pseudo random number generation based on a nonlinear optoelectronic oscillator
,”
Mod. Phys. Lett. B
29
,
1550142
(
2015
).
63.
P.
Devgan
, “
A review of optoelectronic oscillators for high speed signal processing applications
,”
ISRN Electron.
2013
,
401969
(
2013
).
64.
J.-Y.
Lee
,
M.-S.
Jeon
, and
J.-I.
Song
, “
Remote optical frequency up-converter based on optoelectronic oscillator
,”
IEEE Photon. Technol. Lett.
31
,
50
53
(
2019
).
65.
X.
Zou
,
X.
Liu
,
W.
Li
,
P.
Li
,
W.
Pan
,
L.
Yan
, and
L.
Shao
, “
Optoelectronic oscillators (OEOs) to sensing, measurement, and detection
,”
IEEE J. Quantum Electron.
52
,
0601116
(
2016
).
66.
J.
Yao
, “
Optoelectronic oscillators for high speed and high resolution optical sensing
,”
IEEE/OSA J. Lightw. Technol.
35
,
3489
3497
(
2017
).
67.
Y.
Jin
,
Q.
Zhao
,
H.
Yin
, and
H.
Yue
, “Handwritten numeral recognition utilizing reservoir computing subject to optoelectronic feedback,” in Proceedings of the International Conference on Natural Computation (ICNC) (IEEE, 2015), pp. 1165–1169.
68.
Q.
Zhao
,
H.
Yin
, and
H.
Zhu
, “
Simultaneous recognition of two channels of optical packet headers utilizing reservoir computing subject to mutual-coupling optoelectronic feedback
,”
Optik
157
,
951
956
(
2018
).
69.
X.
Bao
,
Q.
Zhao
, and
H.
Yin
, “
Efficient optoelectronic reservoir computing with three-route input based on optical delay lines
,”
Appl. Opt.
58
,
4111
4117
(
2019
).
70.
M.
Tezuka
,
K.
Kanno
, and
M.
Bunsen
, “
Reservoir computing with a slowly modulated mask signal for preprocessing using a mutually coupled optoelectronic system
,”
Jpn. J. Appl. Phys.
55
,
08RE06
(
2016
).
71.
P.
Antonik
,
M.
Haelterman
, and
S.
Massar
, “
Brain-inspired photonic signal processor for generating periodic patterns and emulating chaotic systems
,”
Phys. Rev. Appl.
7
,
054014
(
2017
).
72.
Y.
Chen
,
L.
Yi
,
J.
Ke
,
Z.
Yang
,
Y.
Yang
,
L.
Huang
,
Q.
Zhuge
, and
W.
Hu
, “
Reservoir computing system with double optoelectronic feedback loops
,”
Opt. Express
27
,
27431
27440
(
2019
).
73.
A.
Argyris
,
J.
Bueno
, and
I.
Fischer
, “
Photonic machine learning implementation for signal recovery in optical communications
,”
Sci. Rep.
8
,
8487
(
2018
).
74.
A.
Argyris
,
J.
Bueno
, and
I.
Fischer
, “
PAM-4 transmission at 1550 nm using photonic reservoir computing post-processing
,”
IEEE Access
7
,
37017
37025
(
2019
).
75.
D.
Brunner
,
M. C.
Soriano
,
C. R.
Mirasso
, and
I.
Fischer
, “
Parallel photonic information processing at gigabyte per second data rates using transient states
,”
Nat. Commun.
4
,
1364
(
2013
).
76.
J.
Bueno
,
D.
Brunner
,
M. C.
Soriano
, and
I.
Fischer
, “
Conditions for reservoir computing performance using semiconductor lasers with delayed optical feedback
,”
Opt. Express
25
,
2401
2412
(
2017
).
77.
A.
Dejonckheere
,
F.
Duport
,
A.
Smerieri
,
L.
Fang
,
J.-L.
Oudar
,
M.
Haelterman
, and
S.
Massar
, “
All-optical reservoir computer based on saturation of absorption
,”
Opt. Express
22
,
10868
10881
(
2014
).
78.
F.
Duport
,
B.
Schneider
,
A.
Smerieri
,
M.
Haelterman
, and
S.
Massar
, “
All-optical reservoir computing
,”
Opt. Express
20
,
22783
22795
(
2012
).
79.
K.
Hicke
,
M. A.
Escalona-Moran
,
D.
Brunner
,
M. C.
Soriano
,
I.
Fischer
, and
C. R.
Mirasso
, “
Information processing using transient dynamics of semiconductor lasers subject to delayed feedback
,”
IEEE J. Sel. Top. Quantum Electron.
19
,
1501610
(
2013
).
80.
Y.
Kuriki
,
J.
Nakayama
,
K.
Takano
, and
A.
Uchida
, “
Impact of input mask signals on delay-based photonic reservoir computing with semiconductor lasers
,”
Opt. Express
26
,
5777
5788
(
2018
).
81.
R. M.
Nguimdo
,
E.
Lacot
,
O.
Jacquin
,
O.
Hugon
,
G.
Van der Sande
, and
H. G.
de Chatellus
, “
Prediction performance of reservoir computing systems based on a diode-pumped erbium-doped microchip laser subject to optical feedback
,”
Opt. Lett.
42
,
375
378
(
2017
).
82.
K.
Takano
,
C.
Sugano
,
M.
Inubushi
,
K.
Yoshimura
,
S.
Sunada
,
K.
Kanno
, and
A.
Uchida
, “
Compact reservoir computing with a photonic integrated circuit
,”
Opt. Express
26
,
29424
29439
(
2018
).
83.
J.
Vatin
,
D.
Rontani
, and
M.
Sciamanna
, “
Experimental reservoir computing using VCSEL polarization dynamics
,”
Opt. Express
27
,
18579
18584
(
2019
).
84.
Q.
Vinckier
,
F.
Duport
,
A.
Smerieri
,
K.
Vandoorne
,
P.
Bienstman
,
M.
Haelterman
, and
S.
Massar
, “
High-performance photonic reservoir computer based on a coherently driven passive cavity
,”
Optica
2
,
438
446
(
2015
).
85.
D.-Z.
Yue
,
Z.-M.
Wu
,
Y.-S.
Hou
, and
G.-Q.
Xia
, “
Effects of some operation parameters on the performance of a reservoir computing system based on a delay feedback semiconductor laser with information injection by current modulation
,”
IEEE Access
7
,
128767
128773
(
2019
).
86.
M. C.
Soriano
,
J.
García-Ojalvo
,
C. R.
Mirasso
, and
I.
Fischer
, “
Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers
,”
Rev. Mod. Phys.
85
,
421
470
(
2013
).
87.
A.
Uchida
,
K.
Amano
,
M.
Inoue
,
K.
Hirano
,
S.
Naito
,
H.
Someya
,
I.
Oowada
,
T.
Kurashige
,
M.
Shiki
,
S.
Yoshimori
,
K.
Yoshimura
, and
P.
Davis
, “
Fast physical random bit generation with chaotic semiconductor lasers
,”
Nat. Photonics
2
,
728
732
(
2008
).
88.
T. E.
Murphy
and
R.
Roy
, “
Chaotic lasers: The world’s fastest dice
,”
Nat. Photonics
2
,
714
715
(
2008
).
89.
M.
Sciamanna
and
K. A.
Shore
, “
Physics and applications of laser diode chaos
,”
Nat. Photonics
9
,
151
162
(
2015
).
90.
A.
Uchida
,
R.
McAllister
, and
R.
Roy
, “
Consistency of nonlinear system response to complex drive signals
,”
Phys. Rev. Lett.
93
,
244102
(
2004
).
91.
J.
Nakayama
,
K.
Kanno
, and
A.
Uchida
, “
Laser dynamical reservoir computing with consistency: An approach of a chaos mask signal
,”
Opt. Express
24
,
8679
8692
(
2016
).
92.
J.
Qin
,
Q.
Zhao
,
D.
Xu
,
H.
Yin
,
Y.
Chang
, and
D.
Huang
, “
Optical packet header identification utilizing an all-optical feedback chaotic reservoir computing
,”
Mod. Phys. Lett. B
30
,
1650199
(
2016
).
93.
A.
Argyris
,
J.
Cantero
,
M.
Galletero
,
E.
Pereda
,
C. R.
Mirasso
,
I.
Fischer
, and
M. C.
Soriano
, “
Comparison of photonic reservoir computing systems for fiber transmission equalization
,”
IEEE J. Sel. Top. Quantum Electron.
26
,
5100309
(
2020
).
94.
Y.
Hou
,
G.
Xia
,
W.
Yang
,
D.
Wang
,
E.
Jayaprasath
,
Z.
Jiang
,
C.
Hu
, and
Z.
Wu
, “
Prediction performance of reservoir computing system based on a semiconductor laser subject to double optical feedback and optical injection
,”
Opt. Express
26
,
10211
10219
(
2018
).
95.
Y.-S.
Hou
,
G.-Q.
Xia
,
E.
Jayaprasath
,
D.-Z.
Yue
,
W.-Y.
Yang
, and
Z.-M.
Wu
, “
Prediction and classification performance of reservoir computing system using mutually delay-coupled semiconductor lasers
,”
Opt. Commun.
433
,
215
220
(
2019
).
96.
D.
Yue
,
Z.
Wu
,
Y.
Hou
,
B.
Cui
,
Y.
Jin
,
M.
Dai
, and
G.
Xia
, “
Performance optimization research of reservoir computing system based on an optical feedback semiconductor laser under electrical information injection
,”
Opt. Express
27
,
19931
19939
(
2019
).
97.
J.
Vatin
,
D.
Rontani
, and
M.
Sciamanna
, “
Enhanced performance of a reservoir computer using polarization dynamics in VCSELs
,”
Opt. Lett.
43
,
4497
4500
(
2018
).
98.
X. X.
Guo
,
S. Y.
Xiang
,
Y. H.
Zhang
,
L.
Lin
,
A. J.
Wen
, and
Y.
Hao
, “
Four-channels reservoir computing based on polarization dynamics in mutually coupled VCSELs system
,”
Opt. Express
27
,
23293
23306
(
2019
).
99.
X.
Tan
,
Y.
Hou
,
Z.
Wu
, and
G.
Xia
, “
Parallel information processing by a reservoir computing system based on a VCSEL subject to double optical feedback and optical injection
,”
Opt. Express
27
,
26070
26079
(
2019
).
100.
X. X.
Guo
,
S. Y.
Xiang
,
Y. H.
Zhang
,
L.
Lin
,
A. J.
Wen
, and
Y.
Hao
, “
Polarization multiplexing reservoir computing based on a VCSEL with polarized optical feedback
,”
IEEE J. Sel. Top. Quantum Electron.
26
,
1700109
(
2020
).
101.
R. M.
Nguimdo
,
V.
Lecocq
,
Y. K.
Chembo
, and
T.
Erneux
, “
Effect of time delay on the stability of optoelectronic oscillators based on whispering-gallery mode resonators
,”
IEEE J. Quantum Electron.
52
,
6500107
(
2016
).
102.
T.-Y.
Cheng
,
D.-Y.
Chou
,
C.-C.
Liu
,
Y.-J.
Chang
, and
C.-C.
Chen
, “
Optical neural networks based on optical fiber-communication system
,”
Neurocomputing
364
,
239
244
(
2019
).
103.
C.
Sugano
,
K.
Kanno
, and
A.
Uchida
, “
Reservoir computing using multiple lasers with feedback on a photonic integrated circuit
,”
IEEE J. Sel. Top. Quantum Electron.
26
,
1500409
(
2020
).
104.
K.
Vandoorne
,
W.
Dierckx
,
B.
Schrauwen
,
D.
Verstraeten
,
R.
Baets
,
P.
Bienstman
, and
J. V.
Campenhout
, “
Toward optical signal processing using photonic reservoir computing
,”
Opt. Express
16
,
11182
11192
(
2008
).
105.
C.
Mesaritakis
,
V.
Papataxiarhis
, and
D.
Syvridis
, “
Micro ring resonators as building blocks for an all-optical high-speed reservoir-computing bit-pattern-recognition system
,”
J. Opt. Soc. Am. B
30
,
3048
3055
(
2013
).
106.
K.
Vandoorne
,
P.
Mechet
,
T. V.
Vaerenbergh
,
M.
Fiers
,
G.
Morthier
,
D.
Verstraeten
,
B.
Schrauwen
,
J.
Dambre
, and
P.
Bienstman
, “
Experimental demonstration of reservoir computing on a silicon photonics chip
,”
Nat. Commun.
5
,
3541
(
2014
).
107.
M. R.
Salehi
and
L.
Dehyadegari
, “
Optical signal processing using photonic reservoir computing
,”
J. Mod. Opt.
61
,
1442
1451
(
2014
).
108.
C.
Mesaritakis
,
A.
Bogris
,
A.
Kapsalis
, and
D.
Syvridis
, “
High-speed all-optical pattern recognition of dispersive Fourier images through a photonic reservoir computing subsystem
,”
Opt. Lett.
40
,
3416
3419
(
2015
).
109.
F. D.-L.
Coarer
,
M.
Sciamanna
,
A.
Katumba
,
M.
Freiberger
,
J.
Dambre
,
P.
Bienstman
, and
D.
Rontani
, “
All-optical reservoir computing on a photonic chip using silicon-based ring resonators
,”
IEEE J. Sel. Top. Quantum Electron.
24
,
7600108
(
2018
).
110.
A.
Katumba
,
M.
Freiberger
,
F.
Laporte
,
A.
Lugnan
,
S.
Sackesyn
,
C.
Ma
,
J.
Dambre
, and
P.
Bienstman
, “
Neuromorphic computing based on silicon photonics and reservoir computing
,”
IEEE J. Sel. Top. Quantum Electron.
24
,
8300310
(
2018
).
111.
A.
Katumba
,
J.
Heyvaert
,
B.
Schneider
,
S.
Uvin
,
J.
Dambre
, and
P.
Bienstman
, “
Low-loss photonic reservoir computing with multimode photonic integrated circuits
,”
Sci. Rep.
8
,
2653
(
2018
).
112.
A.
Katumba
,
X.
Yin
,
J.
Dambre
, and
P.
Bienstman
, “
Neuromorphic silicon photonics nonlinear equalizer for optical communications with intensity modulation and direct detection
,”
IEEE J. Lightw. Technol.
37
,
2232
2239
(
2019
).
113.
G.
Hu
,
Y.
Zhang
,
H. A.
Cerdeira
, and
S.
Chen
, “
From low-dimensional synchronous chaos to high-dimensional desynchronous spatiotemporal chaos in coupled systems
,”
Phys. Rev. Lett.
85
,
3377
3380
(
2000
).
114.
Y. C.
Kouomou
and
P.
Woafo
, “
Cluster synchronization in coupled chaotic semiconductor lasers and application to switching in chaos-secured communication networks
,”
Opt. Commun.
223
,
283
293
(
2003
).
115.
Y. C.
Kouomou
and
P.
Woafo
, “
Transitions from spatiotemporal chaos to cluster and complete synchronization states in a shift-invariant set of coupled nonlinear oscillators
,”
Phys. Rev. E
67
,
046205
(
2003
).
116.
T. L.
Carroll
and
L. M.
Pecora
, “
Network structure effects in reservoir computers
,”
Chaos
29
,
083130
(
2019
).
117.
L.
Illing
,
C. D.
Panda
, and
L.
Shareshian
, “
Isochronal chaos synchronization of delay-coupled optoelectronic oscillators
,”
Phys. Rev. E
84
,
016213
(
2011
).
118.
C. R. S.
Williams
,
T. E.
Murphy
,
R.
Roy
,
F.
Sorrentino
,
T.
Dahms
, and
E.
Schöll
, “
Experimental observations of group synchrony in a system of chaotic optoelectronic oscillators
,”
Phys. Rev. Lett.
110
,
064104
(
2013
).
119.
C. R. S.
Williams
,
F.
Sorrentino
,
T. E.
Murphy
, and
R.
Roy
, “
Synchronization states and multistability in a ring of periodic oscillators: Experimentally variable coupling delays
,”
Chaos
23
,
043117
(
2013
).
120.
J. D.
Hart
,
J. P.
Pade
,
T.
Pereira
,
T. E.
Murphy
, and
R.
Roy
, “
Adding connections can hinder network synchronization of time-delayed oscillators
,”
Phys. Rev. E
92
,
022804
(
2015
).
121.
J. D.
Hart
,
D. C.
Schmadel
,
T. E.
Murphy
, and
R.
Roy
, “
Experiments with arbitrary networks in time-multiplexed delay systems
,”
Chaos
27
,
121103
(
2017
).
122.
J. D.
Hart
,
Y.
Zhang
,
R.
Roy
, and
A. E.
Motter
, “
Topological control of synchronization patterns: Trading symmetry for stability
,”
Phys. Rev. Lett.
122
,
058301
(
2019
).
123.
A. M.
Hagerstrom
,
T. E.
Murphy
,
R.
Roy
,
P.
Hövel
,
I.
Omelchenko
, and
E.
Schöll
, “
Experimental observation of chimeras in coupled-map lattices
,”
Nat. Phys.
8
,
658
661
(
2012
).
124.
L. M.
Pecora
,
F.
Sorrentino
,
A. M.
Hagerstrom
,
T. E.
Murphy
, and
R.
Roy
, “
Cluster synchronization and isolated desynchronization in complex networks with symmetries
,”
Nat. Commun.
5
,
4079
(
2014
).
125.
J. D.
Hart
,
L.
Larger
,
T. E.
Murphy
, and
R.
Roy
, “
Delayed dynamical systems: Networks, chimeras and reservoir computing
,”
Philos. Trans. R. Soc. A
377
,
20180123
(
2019
).
126.
D.
Canaday
,
A.
Griffith
, and
D. J.
Gauthier
, “
Rapid time series prediction with a hardware-based reservoir computer
,”
Chaos
28
,
123119
(
2018
).
127.
N. D.
Haynes
,
M. C.
Soriano
,
D. P.
Rosin
,
I.
Fischer
, and
D. J.
Gauthier
, “
Reservoir computing with a single time-delay autonomous Boolean node
,”
Phys. Rev. E
91
,
020801
(
2015
).
128.
Z.
Lu
,
J.
Pathak
,
B.
Hunt
,
M.
Girvan
,
R.
Brockett
, and
E.
Ott
, “
Reservoir observers: Model-free inference of unmeasured variables in chaotic systems
,”
Chaos
27
,
041102
(
2017
).
129.
J.
Pathak
,
B.
Hunt
,
M.
Girvan
,
Z.
Lu
, and
E.
Ott
, “
Model-free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach
,”
Phys. Rev. Lett.
120
,
024102
(
2018
).
130.
J.
Dambre
,
D.
Verstraeten
,
B.
Schrauwen
, and
S.
Massar
, “
Information processing capacity of dynamical systems
,”
Sci. Rep.
2
,
514
(
2012
).
131.
L.
Grigoryeva
,
J.
Henriques
,
L.
Larger
, and
J.-P.
Ortega
, “
Stochastic nonlinear time series forecasting using time-delay reservoir computers: Performance and universality
,”
Neural Netw.
55
,
59
71
(
2014
).
132.
L.
Grigoryeva
,
J.
Henriques
,
L.
Larger
, and
J.-P.
Ortega
, “
Optimal nonlinear information processing capacity in delay-based reservoir computers
,”
Sci. Rep.
5
,
12858
(
2015
).
133.
S.
Ortín
and
L.
Pesquera
, “
Reservoir computing with an ensemble of time-delay reservoirs
,”
Cognit. Comput.
9
,
327
336
(
2017
).
134.
F.
Bohm
,
G.
Verschaffelt
, and
G.
Van der Sande
, “
A poor man’s coherent Ising machine based on opto-electronic feedback systems for solving optimization problems
,”
Nat. Commun.
10
,
3538
(
2019
).
135.
J.
Torrejon
,
M.
Riou
,
F. A.
Araujo
,
S.
Tsunegi
,
G.
Khalsa
,
D.
Querlioz
,
P.
Bortolotti
,
V.
Cros
,
K.
Yakushiji
,
A.
Fukushima
,
H.
Kubota
,
S.
Yuasa
,
M. D.
Stiles
, and
J.
Grollier
, “
Neuromorphic computing with nanoscale spintronic oscillators
,”
Nature
547
,
428
431
(
2017
).
136.
G.
Dion
,
S.
Mejaouri
, and
J.
Sylvestre
, “
Reservoir computing with a single delay coupled non-linear mechanical oscillator
,”
J. Appl. Phys.
124
,
152132
(
2018
).
137.
I.
Estébanez
,
I.
Fischer
, and
M. C.
Soriano
, “
Constructive role of noise for high-quality replication of chaotic attractor dynamics using a hardware-based reservoir computer
,”
Phys. Rev. Appl.
12
,
034058
(
2019
).
138.
M.
Riou
,
J.
Torrejon
,
B.
Garitaine
,
F.
Abreu Araujo
,
P.
Bortolotti
,
V.
Cros
,
S.
Tsunegi
,
K.
Yakushiji
,
A.
Fukushima
,
H.
Kubota
,
S.
Yuasa
,
D.
Querlioz
,
M.
Stiles
, and
J.
Grollier
, “
Temporal pattern recognition with delayed-feedback spin-torque nano-oscillators
,”
Phys. Rev. Appl.
12
,
024049
(
2019
).
You do not currently have access to this content.