The concept of reservoir computing emerged from a specific machine learning paradigm characterized by a three-layered architecture (input, reservoir, and output), where only the output layer is trained and optimized for a particular task. In recent years, this approach has been successfully implemented using various hardware platforms based on optoelectronic and photonic systems with time-delayed feedback. In this review, we provide a survey of the latest advances in this field, with some perspectives related to the relationship between reservoir computing, nonlinear dynamics, and network theory.
REFERENCES
1.
P.
Mehta
, M.
Bukov
, C.-H.
Wanga
, A. G. R.
Day
, C.
Richardson
, C. K.
Fisher
, and D. J.
Schwab
, “A high-bias, low-variance introduction to machine learning for physicists
,” Phys. Rep.
810
, 1
–124
(2019
). 2.
D.
Silver
, J.
Schrittwieser
, K.
Simonyan
, I.
Antonoglou
, A.
Huang
, A.
Guez
, T.
Hubert
, L.
Baker
, M.
Lai
, A.
Bolton
, Y.
Chen
, T.
Lillicrap
, F.
Hui
, L.
Sifre
, G.
van den Driessche
, T.
Graepel
, and D.
Hassabis
, “Mastering the game of Go without human knowledge
,” Nature
550
, 354
–359
(2017
). 3.
D.
Silver
, T.
Hubert
, J.
Schrittwieser
, I.
Antonoglou
, M.
Lai
, A.
Guez
, M.
Lanctot
, L.
Sifre
, D.
Kumaran
, T.
Graepel
, T.
Lillicrap
, K.
Simonyan
, and D.
Hassabis
, “A general reinforcement learning algorithm that masters Chess, Shogi, and Go through self-play
,” Science
362
, 1140
–1144
(2018
). 4.
W.
Maass
, T.
Natschläger
, and H.
Markram
, “Real-time computing without stable states: A new framework for neural computation based on perturbations
,” Neural Comput.
14
, 2531
–2560
(2002
). 5.
H.
Jaeger
and H.
Haas
, “Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
,” Science
304
, 78
–80
(2004
). 6.
D.
Verstraeten
, B.
Schrauwen
, M.
D’Haene
, and D.
Stroobandt
, “An experimental unification of reservoir computing methods
,” Neural Netw.
20
, 391
–403
(2007
). 7.
M.
Lukosevicius
and H.
Jaeger
, “Reservoir computing approaches to recurrent neural network training
,” Comput. Sci. Rev.
3
, 127
–149
(2009
). 8.
G.
Tanaka
, T.
Yamane
, J. B.
Héroux
, R.
Nakane
, N.
Kanazawa
, S.
Takeda
, H.
Numata
, D.
Nakano
, and A.
Hirose
, “Recent advances in physical reservoir computing: A review
,” Neural Netw.
115
, 100
–123
(2019
). 9.
F. T.
Arecchi
, G.
Giacomelli
, A.
Lapucci
, and R.
Meucci
, “Two-dimensional representation of a delayed dynamical system
,” Phys. Rev. A
45
, R4225
–R4228
(1992
). 10.
S.
Yanchuk
and G.
Giacomelli
, “Spatio-temporal phenomena in complex systems with time delays
,” J. Phys. A
50
, 103001
(2017
). 11.
L.
Appeltant
, M. C.
Soriano
, G. V.
der Sande
, J.
Danckaert
, S.
Massar
, J.
Dambre
, B.
Schrauwen
, C. R.
Mirasso
, and I.
Fischer
, “Information processing using a single dynamical node as complex system
,” Nat. Commun.
2
, 468
(2011
). 12.
G.
Van der Sande
, D.
Brunner
, and M. C.
Soriano
, “Advances in photonic reservoir computing
,” Nanophotonics
6
, 561
–576
(2017
). 13.
D.
Brunner
, B.
Penkovsky
, B. A.
Marquez
, M.
Jacquot
, I.
Fischer
, and L.
Larger
, “Tutorial: Photonic neural networks in delay systems
,” J. Appl. Phys.
124
, 152004
(2018
). 14.
P.
Antonik
, F.
Duport
, M.
Hermans
, A.
Smerieri
, M.
Haelterman
, and S.
Massar
, “Online training of an opto-electronic reservoir computer applied to real-time channel equalization
,” IEEE Trans. Neural Netw. Learn. Syst.
28
, 2686
–2698
(2016
). 15.
F.
Duport
, A.
Smerieri
, A.
Akrout
, M.
Haelterman
, and S.
Massar
, “Virtualization of a photonic reservoir computer
,” IEEE/OSA J. Lightw. Technol.
34
, 2085
–2091
(2016
). 16.
F.
Duport
, A.
Smerieri
, A.
Akrout
, M.
Haelterman
, and S.
Massar
, “Fully analogue photonic reservoir computer
,” Sci. Rep.
6
, 22381
(2016
). 17.
M.
Hermans
, P.
Antonik
, M.
Haelterman
, and S.
Massar
, “Embodiment of learning in electro-optical signal processors
,” Phys. Rev. Lett.
117
, 128301
(2016
). 18.
L.
Larger
, M. C.
Soriano
, D.
Brunner
, L.
Appeltant
, J. M.
Gutierrez
, L.
Pesquera
, C. R.
Mirasso
, and I.
Fischer
, “Photonic information processing beyond Turing: An optoelectronic implementation of reservoir computing
,” Opt. Express
20
, 3241
–3249
(2012
). 19.
L.
Larger
, A.
Baylón-Fuentes
, R.
Martinenghi
, V. S.
Udaltsov
, Y. K.
Chembo
, and M.
Jacquot
, “High-speed photonic reservoir computing using a time-delay-based architecture: Million words per second classification
,” Phys. Rev. X
7
, 011015
(2017
). 20.
R.
Martinenghi
, S.
Rybalko
, M.
Jacquot
, Y. K.
Chembo
, and L.
Larger
, “Photonic nonlinear transient computing with multiple-delay wavelength dynamics
,” Phys. Rev. Lett.
108
, 244101
(2012
). 21.
S.
Ortín
, M. C.
Soriano
, L.
Pesquera
, D.
Brunner
, D.
San-Martín
, I.
Fischer
, C. R.
Mirasso
, and J. M.
Gutiérrez
, “A unified framework for reservoir computing and extreme learning machines based on a single time-delayed neuron
,” Sci. Rep.
5
, 14945
(2015
). 22.
Y.
Paquot
, F.
Duport
, A.
Smerieri
, J.
Dambre
, B.
Schrauwen
, M.
Haelterman
, and S.
Massar
, “Optoelectronic reservoir computing
,” Sci. Rep.
2
, 287
(2012
). 23.
J.
Qin
, Q.
Zhao
, H.
Yin
, Y.
Jin
, and C.
Liu
, “Numerical simulation and experiment on optical packet header recognition utilizing reservoir computing based on optoelectronic feedback
,” IEEE Photonics J.
9
, 7901311
(2017
). 24.
M. C.
Soriano
, S.
Ortín
, D.
Brunner
, L.
Larger
, C. R.
Mirasso
, I.
Fischer
, and L.
Pesquera
, “Optoelectronic reservoir computing: Tackling noise-induced performance degradation
,” Opt. Express
21
, 12
–20
(2013
). 25.
Y. K.
Chembo
, D.
Brunner
, M.
Jacquot
, and L.
Larger
, “Optoelectronic oscillators with time-delayed feedback
,” Rev. Mod. Phys.
91
, 035006
(2019
). 26.
L.
Larger
, “Complexity in electro-optic delay dynamics: Modelling, design and applications
,” Philos. Trans. R. Soc. A
371
, 20120464
(2013
). 27.
L.
Illing
and D. J.
Gauthier
, “Hopf bifurcations in time-delay systems with band-limited feedback
,” Physica D
210
, 180
–202
(2005
). 28.
A. B.
Cohen
, B.
Ravoori
, T. E.
Murphy
, and R.
Roy
, “Using synchronization for prediction of high-dimensional chaotic dynamics
,” Phys. Rev. Lett.
101
, 154102
(2008
). 29.
T. E.
Murphy
, A. B.
Cohen
, B.
Ravoori
, K. R. B.
Schmitt
, A. V.
Setty
, F.
Sorrentino
, C. R. S.
Williams
, E.
Ott
, and R.
Roy
, “Complex dynamics and synchronization of delayed-feedback nonlinear oscillators
,” Philos. Trans. R. Soc. A
368
, 343
–366
(2010
). 30.
B.
Ravoori
, A. B.
Cohen
, J.
Sun
, A. E.
Motter
, T. E.
Murphy
, and R.
Roy
, “Robustness of optimal synchronization in real networks
,” Phys. Rev. Lett.
107
, 034102
(2011
). 31.
G. R. G.
Chengui
, A. F.
Talla
, J. H. T.
Mbé
, A.
Coillet
, K.
Saleh
, L.
Larger
, P.
Woafo
, and Y. K.
Chembo
, “Theoretical and experimental study of slow-scale Hopf limit-cycles in laser-based wideband optoelectronic oscillators
,” J. Opt. Soc. Am. B
31
, 2310
–2316
(2014
). 32.
G. R. G.
Chengui
, P.
Woafo
, and Y. K.
Chembo
, “The simplest laser-based optoelectronic oscillator: An experimental and theoretical study
,” IEEE/OSA J. Lightw. Technol.
34
, 873
–878
(2016
). 33.
M.
Nourine
, Y. K.
Chembo
, and L.
Larger
, “Wideband chaos generation using a delayed oscillator and a two-dimensional nonlinearity induced by a quadrature phase-shift-keying electro-optic modulator
,” Opt. Lett.
36
, 2833
–2835
(2011
). 34.
L.
Weicker
, T.
Erneux
, O.
D’Huys
, J.
Danckaert
, M.
Jacquot
, Y.
Chembo
, and L.
Larger
, “Strongly asymmetric square waves in a time-delayed system
,” Phys. Rev. E
86
, 055201
(2012
). 35.
L.
Weicker
, T.
Erneux
, M.
Jacquot
, Y.
Chembo
, and L.
Larger
, “Crenelated fast oscillatory outputs of a two-delay electro-optic oscillator
,” Phys. Rev. E
85
, 026206
(2012
). 36.
L.
Weicker
, T.
Erneux
, O.
D’Huys
, J.
Danckaert
, M.
Jacquot
, Y.
Chembo
, and L.
Larger
, “Slow–fast dynamics of a time-delayed electro-optic oscillator
,” Philos. Trans. R. Soc. A
371
, 20120459
(2013
). 37.
A. F.
Talla
, R.
Martinenghi
, P.
Woafo
, and Y. K.
Chembo
, “Breather and pulse-package dynamics in multinonlinear electrooptical systems with delayed feedback
,” IEEE Photonics J.
8
, 7803608
(2016
). 38.
J. H.
Talla Mbé
, A. F.
Talla
, G. R. G.
Chengui
, A.
Coillet
, L.
Larger
, P.
Woafo
, and Y. K.
Chembo
, “Mixed-mode oscillations in slow-fast delayed optoelectronic systems
,” Phys. Rev. E
91
, 012902
(2015
). 39.
X. S.
Yao
and L.
Maleki
, “High frequency optical subcarrier generator
,” Electron. Lett.
30
, 1525
–1526
(1994
). 40.
W.
Zhou
and G.
Blasche
, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level
,” IEEE Trans. Microw. Theory Tech.
53
, 929
–933
(2005
). 41.
Y. K.
Chembo
, L.
Larger
, R.
Bendoula
, and P.
Colet
, “Effects of gain and bandwidth on the multimode behavior of optoelectronic microwave oscillators
,” Opt. Express
16
, 9067
–9072
(2008
). 42.
L.
Maleki
, “The optoelectronic oscillator
,” Nat. Photonics
5
, 728
–730
(2011
). 43.
R. M.
Nguimdo
, Y. K.
Chembo
, P.
Colet
, and L.
Larger
, “On the phase noise performance of nonlinear double-loop optoelectronic microwave oscillators
,” IEEE J. Quantum Electron.
48
, 1415
–1423
(2012
). 44.
K.
Saleh
, R.
Henriet
, S.
Diallo
, G.
Lin
, R.
Martinenghi
, I. V.
Balakireva
, P.
Salzenstein
, A.
Coillet
, and Y. K.
Chembo
, “Phase noise performance comparison between optoelectronic oscillators based on optical delay lines and whispering gallery mode resonators
,” Opt. Express
22
, 32158
(2014
). 45.
K.
Saleh
, G.
Lin
, and Y. K.
Chembo
, “Effect of laser coupling and active stabilization on the phase noise performance of optoelectronic microwave oscillators based on whispering-gallery-mode resonators
,” IEEE Photonics J.
7
, 5500111
(2015
). 46.
R. M.
Nguimdo
, K.
Saleh
, A.
Coillet
, G.
Lin
, R.
Martinenghi
, and Y. K.
Chembo
, “Phase noise performance of optoelectronic oscillators based on whispering-gallery mode resonators
,” IEEE J. Quantum Electron.
51
, 6500308
(2015
). 47.
A. F.
Talla
, R.
Martinenghi
, G. R. G.
Chengui
, J. H. T.
Mbé
, K.
Saleh
, A.
Coillet
, G.
Lin
, P.
Woafo
, and Y. K.
Chembo
, “Analysis of phase-locking in narrow-band optoelectronic oscillators with intermediate frequency
,” IEEE J. Quantum Electron.
51
, 5000108
(2015
). 48.
Y. K.
Chembo
, “Laser-based optoelectronic generation of narrowband microwave chaos for radars and radio-communication scrambling
,” Opt. Lett.
42
, 3431
–3434
(2017
). 49.
O.
Lelièvre
, V.
Crozatier
, P.
Berger
, G.
Baili
, O.
Llopis
, D.
Dolfi
, P.
Nouchi
, F.
Goldfarb
, F.
Bretenaker
, L.
Morvan
, and G.
Pillet
, “A model for designing ultralow noise single- and dual-loop 10-GHz optoelectronic oscillators
,” IEEE/OSA J. Lightw. Technol.
35
, 4366
–4374
(2017
). 50.
A.
Ly
, V.
Auroux
, R.
Khayatzadeh
, N.
Gutierrez
, A.
Fernandez
, and O.
Llopis
, “Highly spectrally pure 90-GHz signal synthesis using a coupled optoelectronic oscillator
,” IEEE Photonics Technol. Lett.
30
, 1313
–1316
(2018
). 51.
N.
Yu
, E.
Salik
, and L.
Maleki
, “Ultralow-noise mode-locked laser with coupled optoelectronic oscillator configuration
,” Opt. Lett.
30
, 1231
–1233
(2005
). 52.
Y. K.
Chembo
, A.
Hmima
, P.-A.
Lacourt
, L.
Larger
, and J. M.
Dudley
, “Generation of ultralow jitter optical pulses using optoelectronic oscillators with time-lens soliton-assisted compression
,” IEEE/OSA J. Lightw. Technol.
27
, 5160
–5167
(2009
). 53.
Y. C.
Kouomou
, P.
Colet
, N.
Gastaud
, and L.
Larger
, “Effect of parameter mismatch on the synchronization of chaotic semiconductor lasers with electro-optical feedback
,” Phys. Rev. E
69
, 056226
(2004
). 54.
Y. C.
Kouomou
, P.
Colet
, L.
Larger
, and N.
Gastaud
, “Mismatch-induced bit error rate in optical chaos communications using semiconductor lasers with electrooptical feedback
,” IEEE J. Quantum Electron.
41
, 156
–163
(2005
). 55.
A.
Argyris
, D.
Syvridis
, L.
Larger
, V.
Annovazzi-Lodi
, P.
Colet
, I.
Fischer
, J.
García-Ojalvo
, C. R.
Mirasso
, L.
Pesquera
, and K. A.
Shore
, “Chaos-based communications at high bit rates using commercial fibre-optic links
,” Nature
438
, 343
–346
(2005
). 56.
A.
Uchida
, F.
Rogister
, J.
García-Ojalvo
, and R.
Roy
, “Synchronization and communication with chaotic laser systems,” in Progress in Optics, edited by E. Wolf (Elsevier, 2005), Vol. 48, pp. 203–341.57.
R. M.
Nguimdo
, R.
Lavrov
, P.
Colet
, M.
Jacquot
, Y. K.
Chembo
, and L.
Larger
, “Effect of fiber dispersion on broadband chaos communications implemented by electro-optic nonlinear delay phase dynamics
,” IEEE J. Quantum Electron.
28
, 2688
–2696
(2010
). 58.
J.
Ai
, L.
Wang
, and J.
Wang
, “Secure communications of CAP-4 and OOK signals over MMF based on electro-optic chaos
,” Opt. Lett.
42
, 3662
–3665
(2017
). 59.
J.
Oden
, R.
Lavrov
, Y. K.
Chembo
, and L.
Larger
, “Multi-Gbit/s optical phase chaos communications using a time-delayed optoelectronic oscillator with a three-wave interferometer nonlinearity
,” Chaos
27
, 114311
(2017
). 60.
J.
Ke
, L.
Yi
, G.
Xia
, and W.
Hu
, “Chaotic optical communications over 100-km fiber transmission at 30-Gb/s bit rate
,” Opt. Lett.
43
, 1323
–1326
(2018
). 61.
X.
Fang
, B.
Wetzel
, J.-M.
Merolla
, J. M.
Dudley
, L.
Larger
, C.
Guyeux
, and J. M.
Bahi
, “Noise and chaos contributions in fast random bit sequence generated from broadband optoelectronic entropy sources
,” IEEE Trans. Circ. Syst. I
61
, 888
–901
(2014
). 62.
P.
Mu
, W.
Pan
, S.
Xiang
, N.
Li
, X.
Liu
, and X.
Zou
, “Fast physical and pseudo random number generation based on a nonlinear optoelectronic oscillator
,” Mod. Phys. Lett. B
29
, 1550142
(2015
). 63.
P.
Devgan
, “A review of optoelectronic oscillators for high speed signal processing applications
,” ISRN Electron.
2013
, 401969
(2013
). 64.
J.-Y.
Lee
, M.-S.
Jeon
, and J.-I.
Song
, “Remote optical frequency up-converter based on optoelectronic oscillator
,” IEEE Photon. Technol. Lett.
31
, 50
–53
(2019
). 65.
X.
Zou
, X.
Liu
, W.
Li
, P.
Li
, W.
Pan
, L.
Yan
, and L.
Shao
, “Optoelectronic oscillators (OEOs) to sensing, measurement, and detection
,” IEEE J. Quantum Electron.
52
, 0601116
(2016
). 66.
J.
Yao
, “Optoelectronic oscillators for high speed and high resolution optical sensing
,” IEEE/OSA J. Lightw. Technol.
35
, 3489
–3497
(2017
). 67.
Y.
Jin
, Q.
Zhao
, H.
Yin
, and H.
Yue
, “Handwritten numeral recognition utilizing reservoir computing subject to optoelectronic feedback,” in Proceedings of the International Conference on Natural Computation (ICNC) (IEEE, 2015), pp. 1165–1169.68.
Q.
Zhao
, H.
Yin
, and H.
Zhu
, “Simultaneous recognition of two channels of optical packet headers utilizing reservoir computing subject to mutual-coupling optoelectronic feedback
,” Optik
157
, 951
–956
(2018
). 69.
X.
Bao
, Q.
Zhao
, and H.
Yin
, “Efficient optoelectronic reservoir computing with three-route input based on optical delay lines
,” Appl. Opt.
58
, 4111
–4117
(2019
). 70.
M.
Tezuka
, K.
Kanno
, and M.
Bunsen
, “Reservoir computing with a slowly modulated mask signal for preprocessing using a mutually coupled optoelectronic system
,” Jpn. J. Appl. Phys.
55
, 08RE06
(2016
). 71.
P.
Antonik
, M.
Haelterman
, and S.
Massar
, “Brain-inspired photonic signal processor for generating periodic patterns and emulating chaotic systems
,” Phys. Rev. Appl.
7
, 054014
(2017
). 72.
Y.
Chen
, L.
Yi
, J.
Ke
, Z.
Yang
, Y.
Yang
, L.
Huang
, Q.
Zhuge
, and W.
Hu
, “Reservoir computing system with double optoelectronic feedback loops
,” Opt. Express
27
, 27431
–27440
(2019
). 73.
A.
Argyris
, J.
Bueno
, and I.
Fischer
, “Photonic machine learning implementation for signal recovery in optical communications
,” Sci. Rep.
8
, 8487
(2018
). 74.
A.
Argyris
, J.
Bueno
, and I.
Fischer
, “PAM-4 transmission at 1550 nm using photonic reservoir computing post-processing
,” IEEE Access
7
, 37017
–37025
(2019
). 75.
D.
Brunner
, M. C.
Soriano
, C. R.
Mirasso
, and I.
Fischer
, “Parallel photonic information processing at gigabyte per second data rates using transient states
,” Nat. Commun.
4
, 1364
(2013
). 76.
J.
Bueno
, D.
Brunner
, M. C.
Soriano
, and I.
Fischer
, “Conditions for reservoir computing performance using semiconductor lasers with delayed optical feedback
,” Opt. Express
25
, 2401
–2412
(2017
). 77.
A.
Dejonckheere
, F.
Duport
, A.
Smerieri
, L.
Fang
, J.-L.
Oudar
, M.
Haelterman
, and S.
Massar
, “All-optical reservoir computer based on saturation of absorption
,” Opt. Express
22
, 10868
–10881
(2014
). 78.
F.
Duport
, B.
Schneider
, A.
Smerieri
, M.
Haelterman
, and S.
Massar
, “All-optical reservoir computing
,” Opt. Express
20
, 22783
–22795
(2012
). 79.
K.
Hicke
, M. A.
Escalona-Moran
, D.
Brunner
, M. C.
Soriano
, I.
Fischer
, and C. R.
Mirasso
, “Information processing using transient dynamics of semiconductor lasers subject to delayed feedback
,” IEEE J. Sel. Top. Quantum Electron.
19
, 1501610
(2013
). 80.
Y.
Kuriki
, J.
Nakayama
, K.
Takano
, and A.
Uchida
, “Impact of input mask signals on delay-based photonic reservoir computing with semiconductor lasers
,” Opt. Express
26
, 5777
–5788
(2018
). 81.
R. M.
Nguimdo
, E.
Lacot
, O.
Jacquin
, O.
Hugon
, G.
Van der Sande
, and H. G.
de Chatellus
, “Prediction performance of reservoir computing systems based on a diode-pumped erbium-doped microchip laser subject to optical feedback
,” Opt. Lett.
42
, 375
–378
(2017
). 82.
K.
Takano
, C.
Sugano
, M.
Inubushi
, K.
Yoshimura
, S.
Sunada
, K.
Kanno
, and A.
Uchida
, “Compact reservoir computing with a photonic integrated circuit
,” Opt. Express
26
, 29424
–29439
(2018
). 83.
J.
Vatin
, D.
Rontani
, and M.
Sciamanna
, “Experimental reservoir computing using VCSEL polarization dynamics
,” Opt. Express
27
, 18579
–18584
(2019
). 84.
Q.
Vinckier
, F.
Duport
, A.
Smerieri
, K.
Vandoorne
, P.
Bienstman
, M.
Haelterman
, and S.
Massar
, “High-performance photonic reservoir computer based on a coherently driven passive cavity
,” Optica
2
, 438
–446
(2015
). 85.
D.-Z.
Yue
, Z.-M.
Wu
, Y.-S.
Hou
, and G.-Q.
Xia
, “Effects of some operation parameters on the performance of a reservoir computing system based on a delay feedback semiconductor laser with information injection by current modulation
,” IEEE Access
7
, 128767
–128773
(2019
). 86.
M. C.
Soriano
, J.
García-Ojalvo
, C. R.
Mirasso
, and I.
Fischer
, “Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers
,” Rev. Mod. Phys.
85
, 421
–470
(2013
). 87.
A.
Uchida
, K.
Amano
, M.
Inoue
, K.
Hirano
, S.
Naito
, H.
Someya
, I.
Oowada
, T.
Kurashige
, M.
Shiki
, S.
Yoshimori
, K.
Yoshimura
, and P.
Davis
, “Fast physical random bit generation with chaotic semiconductor lasers
,” Nat. Photonics
2
, 728
–732
(2008
). 88.
T. E.
Murphy
and R.
Roy
, “Chaotic lasers: The world’s fastest dice
,” Nat. Photonics
2
, 714
–715
(2008
). 89.
M.
Sciamanna
and K. A.
Shore
, “Physics and applications of laser diode chaos
,” Nat. Photonics
9
, 151
–162
(2015
). 90.
A.
Uchida
, R.
McAllister
, and R.
Roy
, “Consistency of nonlinear system response to complex drive signals
,” Phys. Rev. Lett.
93
, 244102
(2004
). 91.
J.
Nakayama
, K.
Kanno
, and A.
Uchida
, “Laser dynamical reservoir computing with consistency: An approach of a chaos mask signal
,” Opt. Express
24
, 8679
–8692
(2016
). 92.
J.
Qin
, Q.
Zhao
, D.
Xu
, H.
Yin
, Y.
Chang
, and D.
Huang
, “Optical packet header identification utilizing an all-optical feedback chaotic reservoir computing
,” Mod. Phys. Lett. B
30
, 1650199
(2016
). 93.
A.
Argyris
, J.
Cantero
, M.
Galletero
, E.
Pereda
, C. R.
Mirasso
, I.
Fischer
, and M. C.
Soriano
, “Comparison of photonic reservoir computing systems for fiber transmission equalization
,” IEEE J. Sel. Top. Quantum Electron.
26
, 5100309
(2020
). 94.
Y.
Hou
, G.
Xia
, W.
Yang
, D.
Wang
, E.
Jayaprasath
, Z.
Jiang
, C.
Hu
, and Z.
Wu
, “Prediction performance of reservoir computing system based on a semiconductor laser subject to double optical feedback and optical injection
,” Opt. Express
26
, 10211
–10219
(2018
). 95.
Y.-S.
Hou
, G.-Q.
Xia
, E.
Jayaprasath
, D.-Z.
Yue
, W.-Y.
Yang
, and Z.-M.
Wu
, “Prediction and classification performance of reservoir computing system using mutually delay-coupled semiconductor lasers
,” Opt. Commun.
433
, 215
–220
(2019
). 96.
D.
Yue
, Z.
Wu
, Y.
Hou
, B.
Cui
, Y.
Jin
, M.
Dai
, and G.
Xia
, “Performance optimization research of reservoir computing system based on an optical feedback semiconductor laser under electrical information injection
,” Opt. Express
27
, 19931
–19939
(2019
). 97.
J.
Vatin
, D.
Rontani
, and M.
Sciamanna
, “Enhanced performance of a reservoir computer using polarization dynamics in VCSELs
,” Opt. Lett.
43
, 4497
–4500
(2018
). 98.
X. X.
Guo
, S. Y.
Xiang
, Y. H.
Zhang
, L.
Lin
, A. J.
Wen
, and Y.
Hao
, “Four-channels reservoir computing based on polarization dynamics in mutually coupled VCSELs system
,” Opt. Express
27
, 23293
–23306
(2019
). 99.
X.
Tan
, Y.
Hou
, Z.
Wu
, and G.
Xia
, “Parallel information processing by a reservoir computing system based on a VCSEL subject to double optical feedback and optical injection
,” Opt. Express
27
, 26070
–26079
(2019
). 100.
X. X.
Guo
, S. Y.
Xiang
, Y. H.
Zhang
, L.
Lin
, A. J.
Wen
, and Y.
Hao
, “Polarization multiplexing reservoir computing based on a VCSEL with polarized optical feedback
,” IEEE J. Sel. Top. Quantum Electron.
26
, 1700109
(2020
).101.
R. M.
Nguimdo
, V.
Lecocq
, Y. K.
Chembo
, and T.
Erneux
, “Effect of time delay on the stability of optoelectronic oscillators based on whispering-gallery mode resonators
,” IEEE J. Quantum Electron.
52
, 6500107
(2016
). 102.
T.-Y.
Cheng
, D.-Y.
Chou
, C.-C.
Liu
, Y.-J.
Chang
, and C.-C.
Chen
, “Optical neural networks based on optical fiber-communication system
,” Neurocomputing
364
, 239
–244
(2019
). 103.
C.
Sugano
, K.
Kanno
, and A.
Uchida
, “Reservoir computing using multiple lasers with feedback on a photonic integrated circuit
,” IEEE J. Sel. Top. Quantum Electron.
26
, 1500409
(2020
). 104.
K.
Vandoorne
, W.
Dierckx
, B.
Schrauwen
, D.
Verstraeten
, R.
Baets
, P.
Bienstman
, and J. V.
Campenhout
, “Toward optical signal processing using photonic reservoir computing
,” Opt. Express
16
, 11182
–11192
(2008
). 105.
C.
Mesaritakis
, V.
Papataxiarhis
, and D.
Syvridis
, “Micro ring resonators as building blocks for an all-optical high-speed reservoir-computing bit-pattern-recognition system
,” J. Opt. Soc. Am. B
30
, 3048
–3055
(2013
). 106.
K.
Vandoorne
, P.
Mechet
, T. V.
Vaerenbergh
, M.
Fiers
, G.
Morthier
, D.
Verstraeten
, B.
Schrauwen
, J.
Dambre
, and P.
Bienstman
, “Experimental demonstration of reservoir computing on a silicon photonics chip
,” Nat. Commun.
5
, 3541
(2014
). 107.
M. R.
Salehi
and L.
Dehyadegari
, “Optical signal processing using photonic reservoir computing
,” J. Mod. Opt.
61
, 1442
–1451
(2014
). 108.
C.
Mesaritakis
, A.
Bogris
, A.
Kapsalis
, and D.
Syvridis
, “High-speed all-optical pattern recognition of dispersive Fourier images through a photonic reservoir computing subsystem
,” Opt. Lett.
40
, 3416
–3419
(2015
). 109.
F. D.-L.
Coarer
, M.
Sciamanna
, A.
Katumba
, M.
Freiberger
, J.
Dambre
, P.
Bienstman
, and D.
Rontani
, “All-optical reservoir computing on a photonic chip using silicon-based ring resonators
,” IEEE J. Sel. Top. Quantum Electron.
24
, 7600108
(2018
).110.
A.
Katumba
, M.
Freiberger
, F.
Laporte
, A.
Lugnan
, S.
Sackesyn
, C.
Ma
, J.
Dambre
, and P.
Bienstman
, “Neuromorphic computing based on silicon photonics and reservoir computing
,” IEEE J. Sel. Top. Quantum Electron.
24
, 8300310
(2018
). 111.
A.
Katumba
, J.
Heyvaert
, B.
Schneider
, S.
Uvin
, J.
Dambre
, and P.
Bienstman
, “Low-loss photonic reservoir computing with multimode photonic integrated circuits
,” Sci. Rep.
8
, 2653
(2018
). 112.
A.
Katumba
, X.
Yin
, J.
Dambre
, and P.
Bienstman
, “Neuromorphic silicon photonics nonlinear equalizer for optical communications with intensity modulation and direct detection
,” IEEE J. Lightw. Technol.
37
, 2232
–2239
(2019
). 113.
G.
Hu
, Y.
Zhang
, H. A.
Cerdeira
, and S.
Chen
, “From low-dimensional synchronous chaos to high-dimensional desynchronous spatiotemporal chaos in coupled systems
,” Phys. Rev. Lett.
85
, 3377
–3380
(2000
). 114.
Y. C.
Kouomou
and P.
Woafo
, “Cluster synchronization in coupled chaotic semiconductor lasers and application to switching in chaos-secured communication networks
,” Opt. Commun.
223
, 283
–293
(2003
). 115.
Y. C.
Kouomou
and P.
Woafo
, “Transitions from spatiotemporal chaos to cluster and complete synchronization states in a shift-invariant set of coupled nonlinear oscillators
,” Phys. Rev. E
67
, 046205
(2003
). 116.
T. L.
Carroll
and L. M.
Pecora
, “Network structure effects in reservoir computers
,” Chaos
29
, 083130
(2019
). 117.
L.
Illing
, C. D.
Panda
, and L.
Shareshian
, “Isochronal chaos synchronization of delay-coupled optoelectronic oscillators
,” Phys. Rev. E
84
, 016213
(2011
). 118.
C. R. S.
Williams
, T. E.
Murphy
, R.
Roy
, F.
Sorrentino
, T.
Dahms
, and E.
Schöll
, “Experimental observations of group synchrony in a system of chaotic optoelectronic oscillators
,” Phys. Rev. Lett.
110
, 064104
(2013
). 119.
C. R. S.
Williams
, F.
Sorrentino
, T. E.
Murphy
, and R.
Roy
, “Synchronization states and multistability in a ring of periodic oscillators: Experimentally variable coupling delays
,” Chaos
23
, 043117
(2013
). 120.
J. D.
Hart
, J. P.
Pade
, T.
Pereira
, T. E.
Murphy
, and R.
Roy
, “Adding connections can hinder network synchronization of time-delayed oscillators
,” Phys. Rev. E
92
, 022804
(2015
). 121.
J. D.
Hart
, D. C.
Schmadel
, T. E.
Murphy
, and R.
Roy
, “Experiments with arbitrary networks in time-multiplexed delay systems
,” Chaos
27
, 121103
(2017
). 122.
J. D.
Hart
, Y.
Zhang
, R.
Roy
, and A. E.
Motter
, “Topological control of synchronization patterns: Trading symmetry for stability
,” Phys. Rev. Lett.
122
, 058301
(2019
). 123.
A. M.
Hagerstrom
, T. E.
Murphy
, R.
Roy
, P.
Hövel
, I.
Omelchenko
, and E.
Schöll
, “Experimental observation of chimeras in coupled-map lattices
,” Nat. Phys.
8
, 658
–661
(2012
). 124.
L. M.
Pecora
, F.
Sorrentino
, A. M.
Hagerstrom
, T. E.
Murphy
, and R.
Roy
, “Cluster synchronization and isolated desynchronization in complex networks with symmetries
,” Nat. Commun.
5
, 4079
(2014
). 125.
J. D.
Hart
, L.
Larger
, T. E.
Murphy
, and R.
Roy
, “Delayed dynamical systems: Networks, chimeras and reservoir computing
,” Philos. Trans. R. Soc. A
377
, 20180123
(2019
). 126.
D.
Canaday
, A.
Griffith
, and D. J.
Gauthier
, “Rapid time series prediction with a hardware-based reservoir computer
,” Chaos
28
, 123119
(2018
). 127.
N. D.
Haynes
, M. C.
Soriano
, D. P.
Rosin
, I.
Fischer
, and D. J.
Gauthier
, “Reservoir computing with a single time-delay autonomous Boolean node
,” Phys. Rev. E
91
, 020801
(2015
). 128.
Z.
Lu
, J.
Pathak
, B.
Hunt
, M.
Girvan
, R.
Brockett
, and E.
Ott
, “Reservoir observers: Model-free inference of unmeasured variables in chaotic systems
,” Chaos
27
, 041102
(2017
). 129.
J.
Pathak
, B.
Hunt
, M.
Girvan
, Z.
Lu
, and E.
Ott
, “Model-free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach
,” Phys. Rev. Lett.
120
, 024102
(2018
). 130.
J.
Dambre
, D.
Verstraeten
, B.
Schrauwen
, and S.
Massar
, “Information processing capacity of dynamical systems
,” Sci. Rep.
2
, 514
(2012
). 131.
L.
Grigoryeva
, J.
Henriques
, L.
Larger
, and J.-P.
Ortega
, “Stochastic nonlinear time series forecasting using time-delay reservoir computers: Performance and universality
,” Neural Netw.
55
, 59
–71
(2014
). 132.
L.
Grigoryeva
, J.
Henriques
, L.
Larger
, and J.-P.
Ortega
, “Optimal nonlinear information processing capacity in delay-based reservoir computers
,” Sci. Rep.
5
, 12858
(2015
). 133.
S.
Ortín
and L.
Pesquera
, “Reservoir computing with an ensemble of time-delay reservoirs
,” Cognit. Comput.
9
, 327
–336
(2017
). 134.
F.
Bohm
, G.
Verschaffelt
, and G.
Van der Sande
, “A poor man’s coherent Ising machine based on opto-electronic feedback systems for solving optimization problems
,” Nat. Commun.
10
, 3538
(2019
). 135.
J.
Torrejon
, M.
Riou
, F. A.
Araujo
, S.
Tsunegi
, G.
Khalsa
, D.
Querlioz
, P.
Bortolotti
, V.
Cros
, K.
Yakushiji
, A.
Fukushima
, H.
Kubota
, S.
Yuasa
, M. D.
Stiles
, and J.
Grollier
, “Neuromorphic computing with nanoscale spintronic oscillators
,” Nature
547
, 428
–431
(2017
). 136.
G.
Dion
, S.
Mejaouri
, and J.
Sylvestre
, “Reservoir computing with a single delay coupled non-linear mechanical oscillator
,” J. Appl. Phys.
124
, 152132
(2018
). 137.
I.
Estébanez
, I.
Fischer
, and M. C.
Soriano
, “Constructive role of noise for high-quality replication of chaotic attractor dynamics using a hardware-based reservoir computer
,” Phys. Rev. Appl.
12
, 034058
(2019
). 138.
M.
Riou
, J.
Torrejon
, B.
Garitaine
, F.
Abreu Araujo
, P.
Bortolotti
, V.
Cros
, S.
Tsunegi
, K.
Yakushiji
, A.
Fukushima
, H.
Kubota
, S.
Yuasa
, D.
Querlioz
, M.
Stiles
, and J.
Grollier
, “Temporal pattern recognition with delayed-feedback spin-torque nano-oscillators
,” Phys. Rev. Appl.
12
, 024049
(2019
). © 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.