In this work, we developed a nonlinear System Identification (SID) method that we called Entropic Regression. Our method adopts an information-theoretic measure for the data-driven discovery of the underlying dynamics. Our method shows robustness toward noise and outliers, and it outperforms many of the current state-of-the-art methods. Moreover, the method of Entropic Regression overcomes many of the major limitations of the current methods such as sloppy parameters, diverse scale, and SID in high-dimensional systems such as complex networks. The use of information-theoretic measures in entropic regression has unique advantages, due to the Asymptotic Equipartition Property of probability distributions, that outliers and other low-occurrence events are conveniently and intrinsically de-emphasized as not-typical, by definition. We provide a numerical comparison with the current state-of-the-art methods in sparse regression, and we apply the methods to different chaotic systems such as the Lorenz System, the Kuramoto-Sivashinsky equations, and the Double-Well Potential.

1.
N. A.
Gershenfeld
and
A. S.
Weigend
,
The Future of Time Series. Time Series Prediction: Forecasting the Future and Understanding the Past
(
Addison-Wesley
,
1993
).
2.
S. L.
Brunton
,
J. L.
Proctor
, and
J. N.
Kutz
, “
Discovering governing equations from data by sparse identification of nonlinear dynamical systems
,”
Proc. Natl. Acad. Sci. U.S.A.
113
,
3932
3937
(
2016
).
3.
C.
Yao
and
E. M.
Bollt
, “
Modeling and nonlinear parameter estimation with Kronecker product representation for coupled oscillators and spatiotemporal systems
,”
Physica D
1
,
78
99
(
2007
).
4.
S.
Chen
,
S. A.
Billings
, and
W.
Luo
, “
Orthogonal least squares methods and their application to non-linear system identification
,”
Int. J. Control
50
,
1873
1896
(
1989
).
5.
N.
Kalouptsidis
,
G.
Mileounis
,
B.
Babadi
, and
V.
Tarokh
, “
Adaptive algorithms for sparse system identification
,”
Signal Process.
91
,
1910
1919
(
2011
).
6.
W.-X.
Wang
,
R.
Yang
,
Y.-C.
Lai
,
V.
Kovanis
, and
C.
Grebogi
, “
Predicting catastrophes in nonlinear dynamical systems by compressive sensing
,”
Phys. Rev. Lett.
106
,
154101
(
2011
).
7.
W.-X.
Wang
,
Y.-C.
Lai
, and
C.
Grebogi
, “
Data based identification and prediction of nonlinear and complex dynamical systems
,”
Phys. Rep.
644
,
1
76
(
2016
).
8.
L.-Z.
Guo
,
S. A.
Billings
, and
D.
Zhu
, “
An extended orthogonal forward regression algorithm for system identification using entropy
,”
Int. J. Control
81
,
690
699
(
2008
).
9.
G.
Tran
and
R.
Ward
, “
Exact recovery of chaotic systems from highly corrupted data
,”
Multiscale Model. Simul.
15
,
1108
1129
(
2017
).
10.
L.
Ljung
, “
System identification
,”
Wiley Encyclopedia Electrical Electron. Eng.
1
19
(
1999
).
11.
H.
Akaike
, “
A new look at the statistical model identification
,”
IEEE. Trans. Automat. Contr.
19
,
716
723
(
1974
).
12.
G.
Prando
,
A.
Chiuso
, and
G.
Pillonetto
, “
Maximum entropy vector kernels for MIMO system identification
,”
Automatica
79
,
326
339
(
2017
).
13.
J.
Sun
,
C.
Cafaro
, and
E. M.
Bollt
, “
Identifying the coupling structure in complex systems through the optimal causation entropy principle
,”
Entropy
16
,
3416
3433
(
2014
).
14.
J.
Sun
,
D.
Taylor
, and
E.
Bollt
, “
Causal network inference by optimal causation entropy
,”
SIAM J. Appl. Dyn. Syst.
14
,
73
106
(
2015
).
15.
T. M.
Cover
and
J. A.
Thomas
,
Elements of Information Theory
(
Wiley-Interscience
,
Hoboken, NJ
,
2005
), pp.
1
748
.
16.
B.
Saltzman
, “
Finite amplitude free convection as an initial value problem—I
,”
J. Atmos. Sci.
19
,
329
341
(
1962
).
17.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
18.
Y.
Kuramoto
and
T.
Tsuzuki
, “
Persistent propagation of concentration waves in dissipative media far from thermal equilibrium
,”
Progress Theor. Phys.
55
,
356
369
(
1976
).
19.
Y.
Kuramoto
, “
Diffusion-induced chaos in reaction systems
,”
Progress Theor. Phys. Suppl.
64
,
346
367
(
1978
).
20.
G. I.
Sivashinsky
, “
Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations
,”
Acta Astronaut.
4
,
1177
1206
(
1977
).
21.
J. M.
Hyman
and
B.
Nicolaenko
, “
The Kuramoto-Sivashinsky equation: A bridge between PDE’s and dynamical systems
,”
Physica D
18
,
113
126
(
1986
).
22.
Y.
Lan
and
P.
Cvitanović
, “
Unstable recurrent patterns in Kuramoto-Sivashinsky dynamics
,”
Phys. Rev. E
78
,
026208
(
2008
).
23.
F.
Christiansen
,
P.
Cvitanovic
, and
V.
Putkaradze
, “
Spatiotemporal chaos in terms of unstable recurrent patterns
,”
Nonlinearity
10
,
55
(
1997
).
24.
P.
Hohenberg
and
B. I.
Shraiman
, “
Chaotic behavior of an extended system
,”
Physica D
37
,
109
115
(
1989
).
25.
P.
Cvitanovic
,
R.
Artuso
,
R.
Mainieri
,
G.
Tanner
,
G.
Vattay
,
N.
Whelan
, and
A.
Wirzba
,
Chaos: Classical and Quantum
(
Niels Bohr Institute
,
Copenhagen
,
2005
), Vol. 69.
26.
J. C.
Robinson
, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Texts in Applied Mathematics (Cambridge University Press, 2001), ISBN: 9780521635646.
27.
M. S.
Jolly
,
I.
Kevrekidis
, and
E. S.
Titi
, “
Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: Analysis and computations
,”
Physica D
44
,
38
60
(
1990
).
28.
S.
Ramdani
,
B.
Rossetto
,
L. O.
Chua
, and
R.
Lozi
, “
Slow manifolds of some chaotic systems with applications to laser systems
,”
Int. J. Bifurcat. Chaos
10
,
2729
2744
(
2000
).
29.
M. S.
Jolly
,
R. M. S.
Rosa
, and
R. M.
Temam
, “
Accurate computations on inertial manifolds
,”
J. Sci. Comp.
22
(
6
),
2216
2238
(
2001
).
30.
G. H.
Golub
and
C. F.
Van Loan
,
Matrix Computations
, 4th ed. (
Johns Hopkins University Press
,
Baltimore, MD
,
2013
), ISBN: 1-4214-0859-7.
31.
L.
Wang
and
R.
Langari
, “
Building Sugeno-type models using fuzzy discretization and orthogonal parameter estimation techniques
,”
IEEE Trans. Fuzzy Syst.
3
,
454
458
(
1995
).
32.
M.
Korenberg
,
S. A.
Billings
,
H.
Liu
, and
P.
McIlroy
, “
Orthogonal parameter estimation algorithm for non-linear stochastic systems
,”
Int. J. Control
48
,
193
210
(
1988
).
33.
T.
Hastie
,
R.
Tibshirani
, and
M.
Wainwright
,
Statistical Learning with Sparsity: The Lasso and Generalizations
(
CRC Press
,
2015
).
34.
M.
Grant
and
S.
Boyd
, “CVX: Matlab software for disciplined convex programming,” 2008.
35.
E. J.
Candès
,
J. K.
Romberg
, and
T.
Tao
, “
Stable signal recovery from incomplete and inaccurate measurements
,”
Commun. Pure Appl. Math.
59
,
1207
1223
(
2006
).
36.
E. J.
Candès
,
J.
Romberg
, and
T.
Tao
, “
Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
,”
IEEE Trans. Inf. Theory
52
,
489
509
(
2006
).
37.
D. L.
Donoho
, “
Compressed sensing
,”
IEEE Trans. Inf. Theory
52
,
1289
1306
(
2006
).
38.
A.
Kraskov
,
H.
Stögbauer
, and
P.
Grassberger
, “
Estimating mutual information
,”
Phys. Rev. E
69
,
066
138
(
2004
).

Supplementary Material

You do not currently have access to this content.