The co-occurrence association is widely observed in many empirical data. Mining the information in co-occurrence data is essential for advancing our understanding of systems such as social networks, ecosystems, and brain networks. Measuring similarity of entities is one of the important tasks, which can usually be achieved using a network-based approach. Here, we show that traditional methods based on the aggregated network can bring unwanted indirect relationships. To cope with this issue, we propose a similarity measure based on the ego network of each entity, which effectively considers the change of an entity’s centrality from one ego network to another. The index proposed is easy to calculate and has a clear physical meaning. Using two different data sets, we compare the new index with other existing ones. We find that the new index outperforms the traditional network-based similarity measures, and it can sometimes surpass the embedding method. In the meanwhile, the measure by the new index is weakly correlated with those by other methods, hence providing a different dimension to quantify similarities in co-occurrence data. Altogether, our work makes an extension in the network-based similarity measure and can be potentially applied in several related tasks.
Skip Nav Destination
Article navigation
January 2020
Research Article|
January 02 2020
Measuring similarity in co-occurrence data using ego-networks
Xiaomeng Wang
;
Xiaomeng Wang
a)
College of Computer and Information Science, Southwest University
, Beibei, Chongqing 400715, People’s Republic of China
Search for other works by this author on:
Yijun Ran
;
Yijun Ran
College of Computer and Information Science, Southwest University
, Beibei, Chongqing 400715, People’s Republic of China
Search for other works by this author on:
a)
Electronic mail: wxm1706@swu.edu.cn
b)
Electronic mail: tjia@swu.edu.cn
Note: This paper is part of the Focus Issue, “When Machine Learning Meets Complex Systems: Networks, Chaos and Nonlinear Dynamics.”
Chaos 30, 013101 (2020)
Article history
Received:
September 24 2019
Accepted:
December 14 2019
Citation
Xiaomeng Wang, Yijun Ran, Tao Jia; Measuring similarity in co-occurrence data using ego-networks. Chaos 1 January 2020; 30 (1): 013101. https://doi.org/10.1063/1.5129036
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Pay-Per-View Access
$40.00
Citing articles via
Nonlinear model reduction from equations and data
Cecilia Pagliantini, Shobhit Jain
Sex, ducks, and rock “n” roll: Mathematical model of sexual response
K. B. Blyuss, Y. N. Kyrychko
Selecting embedding delays: An overview of embedding techniques and a new method using persistent homology
Eugene Tan, Shannon Algar, et al.