Chimera states occur widely in networks of identical oscillators as has been shown in the recent extensive theoretical and experimental research. In such a state, different groups of oscillators can exhibit coexisting synchronous and incoherent behaviors despite homogeneous coupling. Here, we consider a star network, in which N identical peripheral end nodes are connected to the central hub node. We find that if a single node exhibits transient chaotic behavior in the whole network, the pattern of transient chimeralike state, which persists for a significant amount of time, is created. As a proof of the concept, we examine the system of N double pendula (peripheral end nodes) located on the periodically oscillating platform (central hub). We show that such transient chimeralike states can be observed in simple experiments with mechanical oscillators, which are controlled by elementary dynamical equations. Our finding suggests that transient chimeralike states are observable in networks relevant to various real-world systems.

1.
Y.
Kuramoto
and
D.
Battogtokh
, “
Coexistence of coherence and incoherence in nonlocally coupled phase oscillators
,”
Nonlinear Phenom. Complex Syst.
5
,
380
(
2002
).
2.
D. M.
Abrams
and
S. H.
Strogatz
, “
Chimera states for coupled oscillators
,”
Phys. Rev. Lett.
93
,
174102
(
2004
).
3.
C. R.
Laing
, “
The dynamics of chimera states in heterogeneous Kuramoto networks
,”
Physica D
238
(
16
),
1569
1588
(
2009
).
4.
P.
Jaros
,
Y.
Maistrenko
, and
T.
Kapitaniak
, “
Chimera states on the route from coherence to rotating waves
,”
Phys. Rev. E
91
,
022907
(
2015
).
5.
P.
Jaros
,
L.
Borkowski
,
B.
Witkowski
,
K.
Czolczynski
, and
T.
Kapitaniak
, “
Multi-headed chimera states in coupled pendula
,”
Eur. Phys. J. Spec. Top.
224
(
8
),
1605
1617
(
2015
).
6.
M. R.
Tinsley
,
S.
Nkomo
, and
K.
Showalter
, “
Chimera and phase-cluster states in populations of coupled chemical oscillators
,”
Nat. Phys.
8
,
662
(
2012
).
7.
B. K.
Bera
,
D.
Ghosh
, and
M.
Lakshmanan
, “
Chimera states in bursting neurons
,”
Phys. Rev. E
93
,
012205
(
2016
).
8.
J.
Hizanidis
,
V. G.
Kanas
,
A.
Bezerianos
, and
T.
Bountis
, “
Chimera states in networks of nonlocally coupled Hindmarsh-Rose neuron models
,”
Int. J. Bifurc. Chaos
24
(
03
),
1450030
(
2014
).
9.
L.
Larger
,
B.
Penkovsky
, and
Y.
Maistrenko
, “
Virtual chimera states for delayed-feedback systems
,”
Phys. Rev. Lett.
111
,
054103
(
2013
).
10.
G. C.
Sethia
,
A.
Sen
, and
F. M.
Atay
, “
Clustered chimera states in delay-coupled oscillator systems
,”
Phys. Rev. Lett.
100
,
144102
(
2008
).
11.
E. A.
Martens
,
S.
Thutupalli
,
A.
Fourrière
, and
O.
Hallatschek
, “
Chimera states in mechanical oscillator networks
,”
Proc. Natl. Acad. Sci. U.S.A.
110
(
26
),
10563
10567
(
2013
).
12.
T.
Kapitaniak
,
P.
Kuzma
,
J.
Wojewoda
,
K.
Czolczynski
, and
Y.
Maistrenko
, “
Imperfect chimera states for coupled pendula
,”
Sci. Rep.
4
,
6379
(
2014
).
13.
L. V.
Gambuzza
,
A.
Buscarino
,
S.
Chessari
,
L.
Fortuna
,
R.
Meucci
, and
M.
Frasca
, “
Experimental investigation of chimera states with quiescent and synchronous domains in coupled electronic oscillators
,”
Phys. Rev. E
90
,
032905
(
2014
).
14.
J.
Wojewoda
,
K.
Czolczynski
,
Y.
Maistrenko
, and
T.
Kapitaniak
, “
The smallest chimera state for coupled pendula
,”
Sci. Rep.
6
,
34329
(
2016
).
15.
D.
Dudkowski
,
J.
Grabski
,
J.
Wojewoda
,
P.
Perlikowski
,
Y.
Maistrenko
, and
T.
Kapitaniak
, “
Experimental multistable states for small network of coupled pendula
,”
Sci. Rep.
6
,
29833
(
2016
).
16.
C.
Meena
,
K.
Murali
, and
S.
Sinha
, “
Chimera states in star networks
,”
Int. J. Bifurc. Chaos
26
(
09
),
1630023
(
2016
).
17.
S. S.
Chaurasia
and
S.
Sinha
, “
Suppression of chaos through coupling to an external chaotic system
,”
Nonlinear Dyn.
87
(
1
),
159
(
2017
).
18.
Y.-C.
Lai
and
T.
Tél
,
Transient Chaos, Complex Dynamics on Finite-Time Scales
(
Springer
,
New York
,
2011
).
19.
H.
Kantz
and
P.
Grassberger
, “
Repellers, semi-attractors, and long-lived chaotic transients
,”
Physica D
17
(
1
),
75
(
1985
).
20.
T.
Tél
, “
Escape rate from strange sets as an eigenvalue
,”
Phys. Rev. A
36
,
1502
(
1987
).
21.
T.
Tél
, “
The joy of transient chaos
,”
Chaos
25
(
9
),
097619
(
2015
).
22.
P.
Ashwin
and
O.
Burylko
, “
Weak chimeras in minimal networks of coupled phase oscillators
,”
Chaos
25
(
1
),
013106
(
2015
).
23.
C.
Bick
and
P.
Ashwin
, “
Chaotic weak chimeras and their persistence in coupled populations of phase oscillators
,”
Nonlinearity
29
(
5
),
1468
1486
(
2016
).
24.
G.
Chen
,
N. V.
Kuznetsov
,
G. A.
Leonov
, and
T. N.
Mokaev
, “
Hidden attractors on one path: Glukhovsky-Dolzhansky, Lorenz, and Rabinovich systems
,”
Int. J. Bifurc. Chaos
27
(
08
),
1750115
(
2017
).
25.
N. V.
Kuznetsov
,
G. A.
Leonov
,
T. N.
Mokaev
,
A.
Prasad
, and
M. D.
Shrimali
, “
Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system
,”
Nonlinear Dyn.
92
(
2
),
267
285
(
2018
).
26.
A.
Hastings
, “
Transients: The key to long-term ecological understanding?
,”
Trends Ecol. Evol.
19
(
1
),
39
45
(
2004
).
27.
A.
Hastings
,
K. C.
Abbott
,
K.
Cuddington
,
T.
Francis
,
G.
Gellner
,
Y.-C.
Lai
,
A.
Morozov
,
S.
Petrovskii
,
K.
Scranton
, and
M. L.
Zeeman
, “
Transient phenomena in ecology
,”
Science
361
,
eaat6412
(
2018
).
28.
A.
Banerjee
and
D.
Sikder
, “
Transient chaos generates small chimeras
,”
Phys. Rev. E
98
,
032220
(
2018
).
29.
T.
Shinbrot
,
C.
Grebogi
,
J.
Wisdom
, and
J. A.
Yorke
, “
Chaos in a double pendulum
,”
Am. J. Phys.
60
(
6
),
491
499
(
1992
).
30.
R. B.
Levien
and
S. M.
Tan
, “
Double pendulum: An experiment in chaos
,”
Am. J. Phys.
61
(
11
),
1038
1044
(
1993
).
31.
T.
Stachowiak
and
T.
Okada
, “
A numerical analysis of chaos in the double pendulum
,”
Chaos Soliton Fract.
29
(
2
),
417
422
(
2006
).
32.
W.
Singhose
,
D.
Kim
, and
M.
Kenison
, “
Input shaping control of double-pendulum bridge crane oscillations
,”
J. Dyn. Syst. Meas. Control
130
(
3
),
034504
(
2008
).
33.
M. Z.
Rafat
,
M. S.
Wheatland
, and
T. R.
Bedding
, “
Dynamics of a double pendulum with distributed mass
,”
Am. J. Phys.
77
(
3
),
216
223
(
2009
).
34.
A. C.
Skeldon
, “
Dynamics of a parametrically excited double pendulum
,”
Physica D
75
(
4
),
541
558
(
1994
).
35.
G.
Fournier
and
M.
Willem
, “
Multiple solutions of the forced double pendulum equation
,”
Ann. Anal. Nonlin.
S6
,
259
281
(
1989
).
36.
D. J.
Christini
,
J. J.
Collins
, and
P. S.
Linsay
, “
Experimental control of high-dimensional chaos: The driven double pendulum
,”
Phys. Rev. E
54
,
4824
4827
(
1996
).
37.
Z.
Wei
,
Y.
Li
,
B.
Sang
,
Y.
Liu
, and
W.
Zhang
, “
Complex dynamical behaviors in a 3D simple chaotic flow with 3D stable or 3D unstable manifolds of a single equilibrium
,”
Int. J. Bifurc. Chaos
29
(
07
),
1950095
(
2019
).
38.
Z.
Wei
,
I.
Moroz
,
J. C.
Sprott
,
Z.
Wang
, and
W.
Zhang
, “
Detecting hidden chaotic regions and complex dynamics in the self-exciting homopolar disc dynamo
,”
Int. J. Bifurc. Chaos
27
(
02
),
1730008
(
2017
).
39.
Y.
Maistrenko
,
S.
Brezetsky
,
P.
Jaros
,
R.
Levchenko
, and
T.
Kapitaniak
, “
Smallest chimera states
,”
Phys. Rev. E
95
,
010203
(
2017
).
40.
T.
Tél
, in Directions in Chaos, edited by B.-L. Hao (World Scientific, Singapore, 1990), Vol. 3, pp. 149-221.
41.
T.
Tél
, in STATPHYS 19: The Proceedings of the 19th IUPAP Conference on Statistical Physics (World Scientific, Singapore, 1996), pp. 346–362.

Supplementary Material

You do not currently have access to this content.