We show that classical chaotic scattering has experimentally measurable consequences for the quantum conductance of semiconductor microstructures. These include the existence of conductance fluctuations—a sensitivity of the conductance to either Fermi energy or magnetic field—and weak‐localization—a change in the average conductance upon applying a magnetic field. We develop a semiclassical theory and present numerical results for these two effects in which we model the microstructures by billiards attached to leads. We find that the difference between chaotic and regular classical scattering produces a qualitative difference in the fluctuation spectrum and weak‐localization lineshape of chaotic and nonchaotic structures. While the semiclassical theory within the diagonal approximation accounts well for the weak‐localization lineshape and for the spectrum of the fluctuations, we uncover a surprising failure of the semiclassical diagonal‐approximation theory in describing the magnitude of these quantum transport effects.

1.
For reviews see M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer-Verlag, New York, 1991) and M.-J. Giannoni, A. Voros, and J. Zinn-Justin (editors). Chaos and Quantum Physics (North-Holland, New York, 1991).
2.
R. A.
Jalabert
,
H. U.
Baranger
, and
A. D.
Stone
,
Phys. Rev. Lett.
65
,
2442
(
1990
).
3.
For reviews of mesoscopic physics see C. W. J. Beenakker and H. van Houten in Solid State Physics, edited by H. Ehrenreich and D. Turnbull (Academic, New York, 1991), Vol. 44, pp. 1–228;
B. L. Altshuler, P. A. Lee, and R. A. Webb (editors), Mesoscopic Phenomena in Solids (North-Holland, New York, 1991);
and
S.
Washburn
and
R. A.
Webb
,
Adv. Phys.
35
,
375
(
1986
).
4.
For reviews of weak-localization in disordered metals see
P. A.
Lee
and
T. V.
Ramakrishnan
,
Rev. Mod. Phys.
57
,
287
(
1985
);
and
G.
Bergmann
,
Phys. Rep.
107
,
1
(
1984
).
5.
P. A.
Lee
and
A. D.
Stone
,
Phys. Rev. Lett.
55
,
1622
(
1985
);
P. A.
Lee
,
A. D.
Stone
, and
H.
Fukuyama
,
Phys. Rev. B
35
,
1039
(
1987
).
6.
B. L.
Altshuler
,
Pis’ma Zh. Eksp. Teor. Fiz.
41
,
530
(
1985
)
[
B. L.
Altshuler
,
JETP Lett.
41
,
648
(
1985
)].
7.
B. L.
Altshuler
and
B. I.
Shklovskii
,
Sov. Phys. JETP
64
,
127
(
1986
).
8.
N.
Argaman
,
Y.
Imry
, and
U.
Smilansky
,
Phys. Rev. B
47
,
4440
(
1993
).
9.
C. M.
Marcus
,
A. J.
Rimberg
,
R. M.
Westervelt
,
P. F.
Hopkins
, and
A. C.
Gossard
,
Phys. Rev. Lett.
69
,
506
(
1992
).
10.
U. W. Keller, O. Millo, A. Mittal, D. E. Prober, and R. N. Sacks, Surf. Sci. in press (1993).
11.
M. J. Berry, J. A. Katine, C. M. Marcus, R. M. Westervelt, and A. C. Gossard, Surf. Sci., in press (1993).
12.
D.
Weiss
,
K.
Richter
,
A.
Menschig
,
R.
Bergmann
,
H.
Schweizer
,
K.
von Klitzing
, and
G.
Weimann
,
Phys. Rev. Lett.
70
,
4118
(
1993
).
13.
C. M.
Marcus
,
R. M.
Westervelt
,
P. F.
Hopkins
, and
A. C.
Gossard
,
Phys. Rev. B
48
,
2460
(
1993
).
14.
C. M. Marcus, R. M. Westervelt, P. F. Hopkins, and A. C. Gossard, Surf. Sci., in press (1993).
15.
C. M.
Marcus
,
R. M.
Westervelt
,
P. F.
Hopkins
, and
A. C.
Gossard
,
Chaos
3
,
643
(
1993
).
16.
N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rhinehart, and Winston, New York, 1976).
17.
R.
Landauer
,
Philos. Mag.
21
,
863
(
1970
).
18.
M.
Büttiker
,
Phys. Rev. Lett.
57
,
1761
(
1986
).
19.
D. S.
Fisher
and
P. A.
Lee
,
Phys. Rev. B
23
,
6851
(
1981
).
20.
A. D.
Stone
and
A.
Szafer
,
IBM J. Res. Dev.
32
,
384
(
1988
).
21.
H. U.
Baranger
and
A. D.
Stone
,
Phys. Rev. B
40
,
8169
(
1989
).
22.
M. V.
Berry
and
J. P.
Keating
,
J. Phys. A
23
,
4839
(
1990
);
M.
Sieber
and
F.
Steiner
,
Phys. Rev. Lett.
67
,
1941
(
1991
);
G.
Tanner
,
P.
Scherer
,
E. B.
Bogomolny
,
B.
Eckhardt
, and
D.
Wintgen
,
Phys. Rev. Lett.
67
,
2410
(
1991
);
E. B.
Bogomolny
,
Nonlinearity
5
,
805
(
1992
);
R.
Aurich
,
C.
Mattheis
,
M.
Sieber
, and
F.
Steiner
,
Phys. Rev. Lett.
68
,
1629
(
1992
);
J. P.
Keating
,
Proc. R. Soc. London Ser. A
436
,
99
(
1992
).
23.
M. V.
Berry
,
Proc. R. Soc. London Ser. A
400
,
229
(
1985
).
24.
O.
Bohigas
,
M.-J.
Giannoni
, and
C.
Schmit
,
Phys. Rev. Lett.
52
,
1
(
1984
);
O. Bohigas, in Ref. 1, pp. 87–200.
25.
A.
Holle
,
J.
Main
,
G.
Wiebusch
,
H.
Rottke
, and
K. H.
Welge
,
Phys. Rev. Lett.
61
,
161
(
1988
).
26.
For a review of quantum chaotic scattering see U. Smilansky in Ref. 1, pp. 371–441.
27.
R. A.
Jalabert
,
A. D.
Stone
, and
Y.
Alhassid
,
Phys. Rev. Lett.
68
,
3468
(
1992
);
A. D. Stone, R. A. Jalabert, and Y. Alhassid, in Transport Phenomena in Mesoscopic Systems, edited by H. Fukuyama and T. Ando, Springer Series in Solid-State Science (Springer-Verlag, Berlin, 1992), Vol. 109.
28.
A. D.
Stone
and
H.
Bruus
,
Physica B
189
,
43
(
1993
);
A. D.
Stone
and
H.
Bruus
,
Surf. Sci.
, in press (
1993
).
29.
T.
Ericson
,
Phys. Rev. Lett.
5
,
430
(
1960
).
30.
R.
Blümel
and
U.
Smilansky
,
Phys. Rev. Lett.
60
,
477
(
1988
);
R.
Blümel
and
U.
Smilansky
,
Physica D
36
,
111
(
1989
);
R.
Blümel
and
U.
Smilansky
,
Phys. Rev. Lett.
64
,
241
(
1990
).
31.
H. U.
Baranger
,
D. P.
DiVincenzo
,
R. A.
Jalabert
, and
A. D.
Stone
,
Phys. Rev. B
44
,
10637
(
1991
).
32.
H. U.
Baranger
,
R. A.
Jalabert
, and
A. D.
Stone
,
Phys. Rev. Lett.
70
,
3876
(
1993
).
33.
H. U. Baranger, R. A. Jalabert, and A. D. Stone (unpublished).
34.
See, e.g.,
H. U.
Baranger
,
Phys. Rev. B
42
,
11479
(
1990
).
35.
J. H. Jensen (preprint, 1993).
36.
W. H.
Miller
,
Adv. Chem. Phys.
25
,
69
(
1974
).
37.
See, e.g., E. H. Heller in Ref. 1, pp. 547–663.
38.
For reviews of classical chaotic scattering see T, Tél in Direction in Chaos, Vol 3, edited by H. B. Lin (World Scientific, Singapore, 1990), pp. 149–211 and U. Smilansky in Ref. 1, pp. 371–441.
39.
R.
Jensen
,
Chaos
1
,
101
(
1991
).
40.
M. L.
Roukes
and
O. L.
Alerhand
,
Phys. Rev. Lett.
65
,
1651
(
1990
).
41.
P. A.
Mello
and
A. D.
Stone
,
Phys. Rev. B
44
,
3559
(
1991
).
42.
C. H.
Lewenkopf
and
H. A.
Weidenmüller
,
Ann. Phys.
212
,
53
(
1991
).
43.
E.
Doron
,
U.
Smilansky
, and
A.
Frenkel
,
Physica D
50
,
367
(
1991
);
E.
Doron
,
U.
Smilansky
, and
A.
Frenkel
,
Phys. Rev. Lett.
65
,
3072
(
1990
).
44.
R.
Blümel
and
U.
Smilansky
,
Phys. Rev. Lett.
69
,
217
(
1992
).
45.
It is important to average over an infinite window in k; see Eq. (15).
46.
There are several subtle aspects of this argument which we address briefly. (1) The paths involved in the sum change as a function of k because the boundary conditions on the angles change. This effect is, however, not essential and can be removed by either averaging using a discrete set of kn = 2nk0 for which paths always remain in the considered set (though new paths enter, of course), or by inserting a delta-function when introducing the integral over angles and performing the integrals more carefully.33 (2) Because we are considering the part of R which is diagonal in mode index, the number of paths contributing to the sum increases only linearly with k, and there is no interference between paths which start contributing at some large k2 and those which were already contributing at k1<k2. For instance, the paths contributing to Σn evenRnn(2k) are exactly the same as those contributing to Σall nRnn(k) while the paths contributing to Σn oddRnn(2k) are new. Thus δRD is a simpler quantity than the full two-point correlation function, considered, for instance, in the statistics of energy levels in Ref. 23. It is this simplicity which allows an exact evaluation. (3) We assume, of course, that the semiclassical expressions for rnm and Rnmconverge.35 Further, we assume that the expression for δRD converges absolutely in order to exchange the limit q→∞ and the sum over paths.
47.
M. V.
Berry
and
M.
Robnik
,
J. Phys. A
19
,
649
(
1986
).
48.
W. A.
Lin
,
J. B.
Delos
, and
R. V.
Jensen
,
Chaos
3
,
655
(
1993
).
49.
Y.-C.
Lai
,
R.
Blümel
,
E.
Ott
, and
C.
Grebogi
,
Phys. Rev. Lett.
68
,
3491
(
1992
) and references therein.
50.
V.
Bauer
and
G. F.
Bertsch
,
Phys. Rev. Lett.
65
,
2213
(
1990
).
51.
O.
Legrand
and
D.
Sornette
,
Europhys. Lett.
11
,
583
(
1990
);
O.
Legrand
and
D.
Sornette
,
Physica D
44
,
229
(
1990
).
52.
R. B. S.
Oakeshott
and
A.
MacKinnon
,
Superlat. Microstruc.
11
,
145
(
1992
).
53.
P.-G. DeGennes, Superconductivity of Metals and Alloys (Addison-Wesley, New York, 1966), pp. 255–259.
54.
C. W. J.
Beenakker
and
H.
van Houten
,
Phys. Rev. B
37
,
6544
(
1988
).
55.
D. Ullmo, K. Richter, and R. A. Jalabert (unpublished).
56.
M. Hastings, A. D. Stone, and H. U. Baranger (unpublished).
57.
S.
Iida
,
H. A.
Weidenmüller
, and
J. A.
Zuk
,
Phys. Rev. Lett.
64
,
583
(
1990
);
S.
Iida
,
H. A.
Weidenmüller
, and
J. A.
Zuk
,
Ann. Phys.
200
,
219
(
1990
).
58.
P. A.
Mello
,
P.
Pereyra
, and
T. H.
Seligman
,
Ann. Phys.
161
,
254
(
1985
) and references therein.
59.
For a review see A. D. Stone, P. A. Mello, K. Muttalib, and J.-L. Pichard in Ref. 3.
60.
N. Argaman, E. Doron, J. Keating, A. Kitaev, M. Sieber, and U. Smilansky (preprint).
61.
M. J. Berry (private communication, 1993).
62.
M. C.
Gutzwiller
,
Physica D
7
,
341
(
1983
).
63.
P.
Gaspard
and
S. A.
Rice
,
J. Chem. Phys.
90
,
2225
,
2242
(
1989
).
64.
Two details of our power spectrum analysis deserve comment. (1) The singularities in the transmission coefficients at the threshold for a mode in the leads34 produce power at high frequency. Most of the time we work within a given mode (away from threshold) in order to minimize this effect; however, the high-frequency power produced does not hinder our getting the characteristic scale of the fluctuations as in Figs. 7 and 9. (2) We do see low-frequency peaks in the power spectra which, however, are eliminated by averaging in the data shown here in order to reveal the high-frequency behavior more clearly. The connection between the peaks in the power spectrum and periodic orbits in the cavity is not clear (numerically) at this time.
65.
S.
Feng
,
C. L.
Kane
,
P. A.
Lee
, and
A. D.
Stone
,
Phys. Rev. Lett.
61
,
834
(
1988
).
This content is only available via PDF.
You do not currently have access to this content.