Recently proposed noise reduction methods for nonlinear chaotic time sequences with additive noise are analyzed and generalized. All these methods have in common that they work iteratively, and that in each step of the iteration the noise is suppressed by requiring locally linear relations among the delay coordinates, i.e., by moving the delay vectors towards some smooth manifold. The different methods can be compared unambiguously in the case of strictly hyperbolic systems corrupted by measurement noise of infinitesimally low level. It was found that all proposed methods converge in this ideal case, but not equally fast. Different problems arise if the system is not hyperbolic, and at higher noise levels. A new scheme which seems to avoid most of these problems is proposed and tested, and seems to give the best noise reduction so far. Moreover, large improvements are possible within the new scheme and the previous schemes if their parameters are not kept fixed during the iteration, and if corrections are included which take into account the curvature of the attracting manifold. Finally, the fact that comparison with simple low‐pass filters tends to overestimate the relative achievements of these nonlinear noise reduction schemes is stressed, and it is suggested that they should be compared to Wiener‐type filters.

1.
P.
Grassberger
,
T.
Schreiber
, and
C.
Schaffrath
,
Int. J. Bifurcation Chaos
1
,
521
(
1991
).
2.
J. P.
Crutchfield
and
B. S.
McNamara
,
Complex Systems
1
,
417
(
1987
).
3.
J.
Cremers
and
A.
Hübler
,
Z. Naturforsch.
42a
,
797
(
1987
).
4.
P. Grassberger, talk at Fritz Haber Conference on “Chaos and Related Non-Linear Phenomena,” Kiryat Anavim, 1986;
Physica Scripta
40
,
346
(
1989
).
5.
J. D.
Farmer
and
J.
Sidorowich
,
Phys. Rev. Lett.
59
,
845
(
1987
).
6.
J. D. Farmer and J. Sidorowich, “Exploiting Chaos to Predict the Future and Reduce Noise,” in Evolution, Learning and Cognition, edited by Y. C. Lee (World Scientific, Singapore, 1988).
7.
M.
Casdagli
,
Physica D
35
,
335
(
1989
).
8.
K. Stockbro, D. K. Umberger, and J. Hertz, J. Complex Systems (1991).
9.
K. Stockbro, “Predicting chaos with weighted maps,” NORDITA preprint (1990).
10.
E. J.
Kostelich
and
J. A.
Yorke
,
Phys. Rev. A
38
,
1649
(
1988
).
11.
S. M.
Hammel
,
Phys. Lett. A
148
,
421
(
1990
).
12.
J. D.
Farmer
and
J.
Sidorowich
,
Physica D
47
,
373
(
1991
).
13.
T.
Schreiber
and
P.
Grassberger
,
Phys. Lett. A
160
,
411
(
1991
).
14.
R.
Cawley
and
G.-H.
Hsu
,
Phys. Rev. A
46
,
3057
(
1992
).
15.
R.
Cawley
and
G.-H.
Hsu
,
Phys. Lett. A
166
,
188
(
1992
).
16.
T.
Sauer
,
Physica D
58
,
193
(
1992
).
17.
W. H. Press, B. P. Flannery, S. A. Teukolski, and W. T. Vetterling, Numerical Recipes (Cambridge University, Cambridge, 1988).
18.
T.
Sauer
,
J. A.
Yorke
, and
M.
Casdagli
,
J. Stat. Phys.
65
,
579
(
1991
).
19.
R.
Vautard
and
M.
Ghil
,
Physica D
35
,
395
(
1989
).
20.
R.
Vautard
,
P.
Yiou
, and
M.
Ghil
,
Physica D
58
,
95
(
1992
).
21.
M.
Hénon
,
Commun. Math. Phys.
50
,
69
(
1976
).
22.
P.
Grassberger
and
H.
Kantz
,
Phys. Lett. A
113
,
235
(
1985
).
23.
R.
Hegger
and
T.
Schreiber
,
Phys. Lett. A
170
,
305
(
1992
).
24.
T. Schreiber, Phys. Rev. E (in press) (1993).
25.
E. N.
Lorenz
,
J. Atmos. Sci.
20
,
130
(
1963
).
26.
O. E.
Rössler
,
Phys. Lett.
57
,
397
(
1976
).
27.
R.
Badii
et al.,
Phys. Rev. Lett.
60
,
979
(
1988
).
This content is only available via PDF.
You do not currently have access to this content.