By viewing the covers of a fractal as a statistical mechanical system, the exact capacity of a multifractal is computed. The procedure can be extended to any multifractal described by a scaling function to show why the capacity and Hausdorff dimension are expected to be equal.

1.
J. D.
Farmer
,
E.
Ott
, and
J. A.
Yorke
,
Physica D
7
,
153
(
1983
).
2.
F. Takens, Detecting Strange Attractors in Turbulence, in Lecture Notes in Mathematics 898 (Springer, Berlin, 1981), pp. 366–381.
3.
T. C.
Halsey
et al.,
Phys. Rev. A
33
,
1141
(
1986
).
4.
E.
Ott
,
W. D.
Withers
, and
J. A.
Yorke
,
J. Statist. Phys.
36
,
687
(
1984
).
5.
N. H.
Packard
,
J. P.
Crutchfield
,
J. D.
Farmer
, and
R. S.
Shaw
,
Phys. Rev. Lett.
45
,
712
(
1980
).
6.
U. Frisch and G. Parisi, “On the singularity structure of fully developed turbulence,” in Varanna School LXXXVIII, International School of Physics “Enrico Fermi,” edited by M. Ghil, R. Benzi, and G. Parisi (North-Holland, Amsterdam, 1985), pp. 84–88.
7.
J.
Hutchinson
,
Indiana Univ. Math. J.
30
,
713
(
1981
).
8.
M. Barnsley, Fractals Everywhere (Academic, San Diego, 1988).
9.
M. J.
Feigenbaum
,
Commun. Math. Phys.
77
,
65
(
1980
).
10.
M. J.
Feigenbaum
,
J. Statist. Phys.
52
,
527
(
1988
).
11.
M. J.
Feigenbaum
,
Nonlinearity
1
,
577
(
1988
).
12.
E. B.
Vul
,
Ya. G.
Sinai
, and
K. M.
Khanin
,
Usp. Math. Nauk
39
,
3
(
1984
).
13.
D. Ruelle, “Bowen’s formula for the Hausdorff dimension of self-similar sets,” Scaling and self-similarity in physics, edited by J. Fröhlich, Vol. 7 of Progress in Physics (Birkhaäser, Boston, 1983), pp. 351–358.
14.
M. J.
Feigenbaum
,
J. Statist. Phys.
46
,
919
(
1987
).
15.
B.
Simon
,
Comm. Math. Phys.
68
,
183
(
1979
).
16.
O. E. Lanford III, Entropy and Equilibrium States in Classical Statistical Mechanics, in Lecture Notes in Physics, Vol. 28 (Springer, Berlin, 1973).
This content is only available via PDF.
You do not currently have access to this content.