In this paper is shown how to interpret the nonlinear dynamics of a class of one‐dimensional physical systems exhibiting soliton behavior in terms of Killing fields for the associated dynamical laws acting as generators of torus knots. Soliton equations are related to dynamical laws associated with the intrinsic kinematics of space curves and torus knots are obtained as traveling wave solutions to the soliton equations. For the sake of illustration a full calculation is carried out by considering the Killing field that is associated with the nonlinear Schrödinger equation. Torus knot solutions are obtained explicitly in cylindrical polar coordinates via perturbation techniques from the circular solution. Using the Hasimoto map, the soliton conserved quantities are interpreted in terms of global geometric quantities and it is shown how to express these quantities as polynomial invariants for torus knots. The techniques here employed are of general interest and lead us to make some conjectures on natural links between the nonlinear dynamics of one‐dimensional extended objects and the topological classification of knots.

1.
V. E.
Zakharov
and
A. B.
Shabat
,
Zh. Eksp. Teor. Fiz.
61
,
118
(
1971
)
[
V. E.
Zakharov
and
A. B.
Shabat
,
Sov. Phys. JETP
34
,
62
(
1972
)].
2.
H.
Hasimoto
,
J. Fluid Mech.
51
,
477
(
1972
).
3.
G. L.
Lamb
, Jr.
,
J. Math. Phys.
18
,
1654
(
1977
).
4.
M.
Lakshmanan
,
J. Math. Phys.
20
,
1667
(
1979
).
5.
M.
Lakshmanan
and
R. K.
Bullough
,
Phys. Lett. A
80
,
287
(
1980
).
6.
G.
Reiter
,
J. Math. Phys.
21
,
2704
(
1980
).
7.
F. J.
Chinea
,
J. Math. Phys.
21
,
1588
(
1980
).
8.
R.
Hermann
,
J. Math. Phys.
24
,
510
(
1983
).
9.
J. J.
Klein
,
J. Math. Phys.
26
,
2181
(
1985
).
10.
M.
Wadati
,
T.
Deguchi
, and
Y.
Akutsu
,
Phys. Rep.
180
,
247
(
1989
).
11.
R. E.
Goldstein
and
D. M.
Petrich
,
Phys. Rev. Lett.
67
,
3203
(
1991
).
12.
R. L.
Ricca
,
Phys. Fluids A
4
,
938
(
1992
).
13.
J. Bernasconi and T. Schneider, Physics in One Dimension (Springer-Verlag, Berlin, 1981).
14.
G. L. Lamb, Jr., Elements of Soliton Theory (Wiley-Interscience, New York, 1980).
15.
R. L.
Ricca
,
Phys. Rev. A
43
,
4281
(
1991
).
16.
J.
Langer
and
R.
Perline
,
J. Nonlinear Sci.
1
,
71
(
1991
).
17.
A.
Onuki
,
Prog. Theor. Phys.
74
,
979
(
1985
).
18.
H.
Hasimoto
and
T.
Kambe
,
J. Phys. Soc. Jpn.
54
,
5
(
1985
).
19.
K.
Konno
,
J. Phys. Soc. Jpn.
59
,
3417
(
1990
).
20.
R. L.
Ricca
,
Nature
352
,
561
(
1991
).
21.
R.
Balakrishnan
,
A. R.
Bishop
, and
R.
Dandoloff
,
Mod. Phys. Lett. B
4
,
1005
(
1990
).
22.
T. J. Willmore, An Introduction to Differential Geometry (Oxford University, London, 1959).
23.
L. A.
Turski
,
Can. J. Phys.
59
,
511
(
1981
).
24.
M.
Lakshmanan
,
J. Phys. A
22
,
4735
(
1989
).
25.
Y.
Fukumoto
and
T.
Miyazaki
,
J. Fluid Mech.
222
,
369
(
1991
).
26.
J. P.
Boyd
,
J. Math. Phys.
25
,
3390
(
1984
).
27.
K. Jänich, Topology (Springer-Verlag, Berlin, 1984).
28.
W. S. Massey, Algebraic Topology: An Introduction (Harcourt, Brace, and World, New York, 1967).
29.
D. Rolfsen, Knots and Links (Publish or Perish, Berkeley, 1976).
30.
J.
Mertsching
,
Fortschr. Phys.
35
,
519
(
1987
).
31.
S.
Kida
,
J. Fluid Mech.
112
,
397
(
1981
).
32.
J. P.
Keener
,
J. Fluid Mech.
211
,
629
(
1990
).
33.
T.
Kambe
and
T.
Takao
,
J. Phys. Soc. Jpn.
31
,
591
(
1971
).
34.
L. D. Fadeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons (Springer-Verlag, Berlin, 1987).
35.
M. J.
McGuinness
,
J. Math. Phys.
21
,
2743
(
1980
).
36.
J. A.
Cavalcante
and
K.
Teneblat
,
J. Math. Phys.
29
,
1044
(
1988
).
37.
A. C.
Scott
,
F. Y. F.
Chu
, and
D. W.
McLaughlin
,
Proc. IEEE
61
,
1443
(
1973
).
38.
A. V. Mikhailov, A. B. Shabat, and V. V. Sokolov, in What Is Integra-bility? (Springer-Verlag, Berlin, 1991), p. 146.
39.
R. L. Ricca, “Invariants of the Betchov-Da Rios equations,” talk given at the International Symposium on Generation of Large Scale Structures in Continuous Media, Perm, USSR Academy of Sciences (June 1990);
also in H. K. Moffatt and R. L. Ricca, in The Global Geometry of Turbulence (Plenum, New York, 1991), p. 257.
40.
R.
Betchov
,
J. Fluid Mech.
22
,
471
(
1965
).
41.
J.
Langer
and
D. A.
Singer
,
J. London Math. Soc.
30
,
512
(
1984
).
42.
J.
Langer
and
D. A.
Singer
,
J. Diff. Geom.
20
,
1
(
1984
).
43.
U.
Abresch
and
J.
Langer
,
J. Diff. Geom.
23
,
175
(
1986
).
This content is only available via PDF.
You do not currently have access to this content.