In the description of bifurcations in a family of maps of an n‐torus it is natural to consider phase‐locked regions in the parameter space that correspond approximately to the sets of parameter values for which the maps have invariant tori. The extreme case of phase‐locking is resonance, where the torus map has a periodic orbit. We study a family of maps of an n‐torus that only differ from a family of torus translations by a small nonlinear perturbation. The widths of the phase‐locked regions for this family generally increase linearly with the perturbation amplitude. However, this growth varies to a higher power law for families of maps that are given by trigonometric polynomials (the so‐called Mathieutype maps). The exponent of the asymptotic power law can be found by simple arithmetic calculations that relate the spectrum of the trigonometric polynomial to the unperturbed translation. Perturbation theory and these calculations predict that typical resonance regions for the family of Mathieu‐type maps are narrow elliptical annuli. All these results are illustrated in a number of numerical examples.

1.
B.
van der Pol
and
J.
van der Mark
,
Philos. Mag.
6
,
653
(
1928
).
2.
R. J.
Sacker
,
J. Math. Mech.
18
,
705
(
1989
).
3.
N.
Fenichel
,
Indiana Univ. Math. J.
21
,
193
(
1971
).
4.
M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, Vol. 583 (Springer-Verlag, Berlin, 1977).
5.
V. I.
Arnold
,
Am. Math. Soc. Transl. II
46
,
213
(
1965
).
6.
M. R.
Herman
,
Publ. Math. IHES
49
,
5
(
1979
).
7.
R. K.
Tavakol
and
A. S.
Tworkowski
,
Phys. Lett. A
111
,
317
(
1985
).
8.
H.
Yahata
,
Prog. Theor. Phys.
64
,
782
(
1980
);
H.
Yahata
,
69
,
396
(
1983
); ,
Prog. Theor. Phys.
H.
Yahata
,
68
,
1070
(
1982
).,
Prog. Theor. Phys.
9.
H. T.
Moon
,
P.
Huerre
, and
L. G.
Redekopp
,
Phys. Rev. Lett.
49
,
458
(
1982
);
H. T.
Moon
,
P.
Huerre
, and
L. G.
Redekopp
,
Physica D
7
,
135
(
1983
).
10.
P.
Davis
and
K.
Ikeda
,
Phys. Lett. A
100
,
455
(
1984
).
11.
V. N.
Damgov
,
P. S.
Landa
,
S. M.
Perminov
, and
G. G.
Shatalova
,
Radiotekh. Elektron.
31
,
730
(
1986
).
12.
P. M.
Battelino
,
Phys. Rev. A
38
,
1495
(
1988
).
13.
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
,
Physica D
15
,
354
(
1985
).
14.
K. Kaneko, Collapse of Tori and Genesis of Chaos in Dissipative Systems (World Scientific, Singapore, 1986).
15.
R. K.
Tavakol
and
A. S.
Tworkowski
,
Phys. Lett. A
100
,
65
(
1984
);
R. K.
Tavakol
and
A. S.
Tworkowski
,
100
,
273
(
1984
).,
Physica D
16.
X.-J.
Wang
and
G.
Nicolis
,
Physica D
26
,
140
(
1987
).
17.
K.
Geist
and
W.
Lauterborn
,
Physica D
41
,
1
(
1990
).
18.
J. P.
Gollub
and
S. V.
Benson
,
J. Fluid Mech.
100
,
449
(
1980
).
19.
S. Fauve and A. Libchaber, “Rayleigh-Bénard experiments in a low Prandtl number fluid, mercury” in Chaos and Order in Nature, Springer Series in Synergetics, Vol. 11, edited by H. Haken (Springer-Verlag, Berlin, 1981), pp. 25–35.
20.
A.
Libchaber
,
S.
Fauve
, and
C.
Laroche
,
Physica D
7
,
73
(
1983
).
21.
J.
Maurer
and
A.
Libchaber
,
J. de Phys.
41
,
L515
(
1980
).
22.
R. W.
Walden
,
P.
Kolodner
,
A.
Passner
, and
C. M.
Surko
,
Phys. Rev. Lett.
534
,
242
(
1984
).
23.
P. R.
Fenstermacher
,
H. L.
Swinney
,
S. A.
Benson
, and
J. P.
Gollub
,
Ann. NY. Acad. Sci.
316
,
652
(
1979
).
24.
M.
Gorman
,
L. A.
Reith
, and
H. L.
Swinney
,
Ann. NY Acad. Sci.
357
,
10
(
1980
).
25.
H. L. Swinney, P. R. Fenstermacher, and J. P. Gollub, “Transition to turbulence in a fluid flow,” in Synergetics, A Workshop. Proceedings of the International Workshop on Synergetics at Schlop Elmau, Bavaria, May 2–7, 1977, Springer Series in Synergetics, Vol. 2, edited by H. Haken (Springer-Verlag, Berlin, 1977), pp. 60–69.
26.
S.
Martin
,
H.
Leber
, and
W.
Martienssen
,
Phys. Rev. Lett.
53
,
303
(
1984
).
27.
P. B.
Ashwin
,
J.
Guaschi
, and
G. P.
King
, “
Rotation sets and phase-locking in a three oscillator system
,”
Warwick preprints
58
, (
1991
).
28.
P. S.
Linsay
and
A. W.
Cumming
,
Physica D
40
,
196
(
1989
).
29.
G. A.
Held
and
C.
Jeffries
,
Phys. Rev. Lett.
56
,
1183
(
1986
).
30.
R.
van Buskirk
and
C.
Jeffries
,
Phys. Rev. A
31
,
3332
(
1985
).
31.
V. A.
Kats
,
Izv. Vyssh. Uchebn. Zaved. Radiofiz.
28
,
161
(
1985
).
32.
S.
Kim
,
R. S.
MacKay
, and
J.
Guckenheimer
,
Nonlinearity
2
,
391
(
1989
).
33.
C.
Baesens
,
J.
Guckenheimer
,
S.
Kim
, and
R. S.
MacKay
,
Physica D
49
,
387
(
1991
).
34.
V. I.
Arnold
,
Russ. Math. Surv.
38
(
4
),
215
(
1983
).
35.
R. E.
Ecke
,
J. D.
Farmer
, and
D. K.
Umberger
,
Nonlinearity
2
,
175
(
1989
).
36.
O. G.
Galkin
,
Physica D
39
,
287
(
1989
).
37.
O. G.
Galkin
,
Funk. Analiz Pril.
26
(
1
),
1
(
1992
);
O. G.
Galkin
,
27
(
1
) (
1993
), to appear.,
Funkc. Anal. Priloz.
38.
M.
Misiurewicz
and
K.
Zieraian
,
J. London Math. Soc.
40
,
490
(
1989
).
39.
S.
Newhouse
,
J.
Palis
, and
F.
Takens
,
Publ. Math. IHES
57
,
5
(
1983
).
40.
L. B.
Jonker
,
Commun. Math. Phys.
129
,
1
(
1990
).
This content is only available via PDF.
You do not currently have access to this content.