Reactive lattice gas automata simulations show that Turing structure can form on a mesoscopic scale and are stable to molecular fluctuations in this domain. Calculations on the Sel’kov model suggest that Turing instabilities can give rise to global spatial symmetry breaking in ATP concentration within the cell cytoplasm with a mesoscopic Turing scale well within typical cell dimensions. This leads to a new mechanism for the global breaking of energy distribution in the cell. It also leads to reappraisal of the importance of the Turing effect on extended biochemical spatial structures and energy transport available to cell morphogenesis.

1.
A. M.
Turing
,
Philos. Trans. R. Soc. London, Ser. B
237
,
37
(
1952
).
2.
J. D. Murray, Mathematical Biology (Springer, New York, 1989).
3.
G. Nicolis and I. Prigogine, Self Organization in Nonlinear Systems (Wiley, New York, 1977).
4.
P. Glansdorff and I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations (Wiley, New York, 1971).
5.
A.
Hunding
,
S. A.
Kaufmann
, and
B.
Goodwin
,
J. Theor. Biol.
145
,
369
(
1990
).
6.
V.
Castets
,
E.
Dulos
,
J.
Boissonade
, and
P.
DeKepper
,
Phys. Rev. Lett.
64
,
2953
(
1990
);
P.
DeKepper
,
V.
Castes
,
E.
Dulos
, and
J.
Boissonade
,
Physica D
49
,
161
(
1991
).
7.
Q.
Ouyang
and
H. L.
Swinney
,
Nature
352
,
610
(
1991
).
8.
I.
Lengyel
and
I.
Epstein
,
Science
251
,
650
(
1991
).
9.
J.
Falta
,
R.
Imbihl
, and
M.
Henzler
,
Phys. Rev. Lett.
64
,
1409
(
1990
).
10.
J.
Boissonade
,
Phys. Lett. A
74
,
285
(
1979
);
P.
Ortoleva
and
S.
Yip
,
J. Chem. Phys.
65
,
2045
(
1976
).
11.
F.
Baras
,
J. E.
Pearson
, and
M.
Malek-Mansour
,
J. Chem. Phys.
93
,
5747
(
1990
).
12.
U.
Frisch
,
B.
Hasslacher
, and
Y.
Pomeau
,
Phys. Rev. Lett.
56
,
1505
(
1986
);
D.
d’Humiéres
,
B.
Hasslacher
,
P.
Lallemand
,
Y.
Pomeau
, and
J. P.
Rivet
,
Complex Systems
1
,
648
(
1987
).
13.
Lattice Gas Methods for Partial Differential Equations, edited by G. Doolen (Addison-Wesley, New York, 1990).
14.
R.
Kapral
,
A.
Lawniczak
, and
P.
Masiar
,
Phys. Rev. Lett.
66
,
2539
(
1991
);
R.
Kapral
,
A.
Lawniczak
, and
P.
Masiar
,
J. Chem. Phys.
96
,
2762
(
1992
).
15.
D.
Dab
,
J. P.
Boon
, and
Y.-X.
Li
,
Phys. Rev. Lett.
66
,
2535
(
1991
).
16.
D.
Dab
,
A.
Lawniczak
,
J.-P.
Boon
, and
R.
Kapral
,
Phys. Rev. Lett.
64
,
2462
(
1990
);
A.
Lawniczak
,
D.
Dab
,
R.
Kapral
, and
J. P.
Boon
,
Physica D
47
,
132
(
1991
).
17.
The automaton modeling of collision processes resembles that of the BGK kinetic equation [
P. L.
Bhatnagar
,
E. P.
Gross
, and
M.
Krook
,
Phys. Rev.
94
,
511
(
1954
)] where collisions are treated as thermalizing events that occur with a given frequency and molecules free stream between such collisions. Thus each “collision” event is the result of a number of real collisions in the system.
18.
For very large solute molecules the solution should be sufficiently dilute that their volume fraction is small compared to the cell volume. If the solvent is very large and the solute concentration is high the mean field description of the solvent may have to be replaced by a more detailed solvent model in order to describe the local solute dynamics accurately.
19.
This corresponds to a few hundredths molar solution, which is sufficiently dilute so that a small fluid volume can easily contain the small solute molecules and many solvent molecules.
20.
In dense gases both microscopic collisional and collective (Stokes-law-like) effects contribute to the diffusion process [
J. T.
Hynes
,
R.
Kapral
, and
M. C.
Weinberg
,
J. Chem. Phys.
70
,
1456
(
1978
)]. In this regime the time scales may be somewhat shorter and the automaton collisional processes may mimic more closely those of the real system.
21.
E. E.
Selkov
,
Eur. J. Biochem.
4
,
79
(
1968
).
22.
P. H.
Richter
,
P.
Rehmus
, and
J.
Ross
,
Prog. Theor. Phys.
66
,
385
(
1981
).
23.
The Turing length was extracted from the simulation by measuring the distances between the density maxima on a 1024×1024 lattice.
24.
See, for instance,
A.
Boiteux
,
A.
Goldbeter
, and
B.
Hess
,
Proc. Nat. Acad. Sci. U.S.A.
72
,
3829
(
1975
).
25.
I.
Lengyel
and
I.
Epstein
,
Proc. Natl. Acad. Sci. U.S.A.
89
,
3977
(
1992
).
This content is only available via PDF.
You do not currently have access to this content.