This paper reports experimental observations of codimension‐two heteroclinic bifurcations in an autonomous third‐order electrical circuit. The paper also reports confirmations by computer simulations. In the laboratory experiments, a pair of programmable resistors are used in order to adjust two bifurcation parameters. In the associated two‐parameter space, several codimension‐one bifurcation sets are experimentally measured to capture codimension‐two bifurcation structures. All of these bifurcation sets are numerically confirmed by exact bifurcation equations which are derived from piecewise‐linear circuit dynamics.  

1.
C. Sparrow, The Lorenz Equation: Bifurcations, Chaos and Strange Attractors (Springer-Verlag, New York, 1982).
2.
C Sparrow, The Lorenz Equation: Bifurcations, Chaos and Strange Attractors (Springer-Verlag, New York, 1982).
3.
P.
Glendinning
and
C.
Sparrow
,
J. Stat. Phys.
5/6
,
35
(
1984
).
4.
P.
Glendinning
and
C.
Sparrrow
,
J. Stat. Phys.
3/4
,
43
(
1986
).
5.
A.
Arneodo
et al.,
J. Stat. Phys.
27
,
171
(
1982
).
6.
D. P.
George
,
Phys. Lett. A
118
,
17
(
1986
).
7.
R.
Tokunaga
et al.,
Proc. of IEEE ISCAS
2
,
826
(
1989
).
8.
M.
Komuro
et al.,
Int. J. Chaos and Bif.
1
,
139
(
1991
).
9.
R.
Fujimoto
et al.,
Trans. IEICE
E73
,
6
,
809
(
1990
).
10.
L. O.
Chua
et al.,
IEEE Trans. CAS
35
,
1512
(
1988
).
11.
T.
Matsumoto
et al.,
IEEE Trans. CAS
32
,
797
(
1985
).
12.
T.
Matsumoto
et al.,
Physica D
24
,
97
(
1987
).
13.
T.
Matsumoto
et al.,
IEEE Trans. CAS
33
,
828
(
1986
).
This content is only available via PDF.
You do not currently have access to this content.