In this note we show how to find patterned solutions in linear arrays of coupled cells. The solutions are found by embedding the system in a circular array with twice the number of cells. The individual cells have a unique steady state, so that the patterned solutions represent a discrete analog of Turing structures in continuous media. We then use the symmetry of the circular array (and bifurcation from an invariant equilibrium) to identify symmetric solutions of the circular array that restrict to solutions of the original linear array. We apply these abstract results to a system of coupled Brusselators to prove that patterned solutions exist. In addition, we show, in certain instances, that these patterned solutions can be found by numerical integration and hence are presumably asymptotically stable.  

1.
V.
Castets
,
E.
Dulos
,
J.
Boissonade
, and
P.
DeKepper
,
Phys. Rev. Lett.
64
,
2953
(
1990
).
2.
A. M.
Turing
,
Philos. Trans. R. Soc., Ser. B
327
,
37
(
1952
).
3.
Q.
Ouyang
and
H. L.
Swinney
,
Nature
352
,
610
(
1991
).
4.
J. P.
Laplante
and
T.
Erneux
,
Physica A
188
,
89
(
1992
).
5.
I.
Prigogine
and
R.
Lefever
,
J. Chem. Phys.
48
,
1695
(
1968
).
6.
A. B.
Rovinsky
,
J. Phys. Chem.
93
,
2716
(
1989
).
7.
D.
Armbruster
and
G.
Dangelmayr
,
Math. Proc. Camb. Phil. Soc.
101
,
167
(
1987
).
8.
J. D. Crawford, M. Golubitsky, M. G. M. Gomes, E. Knobloch, and I. N. Stewart, Boundary conditions as symmetry constraints, in Singularity Theory and Its Applications, Warwick 1989, Part II, Lecture Notes in Math. 1463, edited by M. Roberts and I. Stewart (Springer-Verlag, Heidelberg, 1991), pp. 63–79.
9.
A. T. Winfree, The Geometry of Biological Time (Springer-Verlag, New York, 1980).
10.
J. C.
Alexander
and
J. F. G.
Auchmuty
,
Arch. Rational Mech. Anal.
93
,
253
(
1986
).
11.
M. Golubitsky and I. N. Stewart, Hopf bifurcation with dihedral group symmetry: coupled nonlinear oscillators, Multiparameter Bifurcation Theory, edited by M. Golubitsky and J. Guckenheimer, Contemporary Mathematics 56, AMS (1986), pp. 131–173.
12.
M. Golubitsky, I. N. Stewart, and D. G. Schaeffer, Singularities and Groups in Bifurcation Theory: Vol. II., Appl. Math. Sci. Ser. 69 (Springer-Verlag, New York, 1988).
This content is only available via PDF.
You do not currently have access to this content.