The sensitivity of nonequilibrium Casimir forces on material optical properties can have strong impact on the actuation of devices. For this purpose, we considered nonequilibrium Casimir interactions between good and poor conductors, for example, gold (Au) and highly doped silicon carbide (SiC), respectively. Indeed, for autonomous conservative systems, the bifurcation and phase portrait analysis have shown that the nonequilibrium Casimir forces can have significant impact on the stable and unstable operating regimes depending on the material optical properties. At a few micrometer separations, for systems with high conductivity materials, an increasing temperature difference between the actuating components can enhance the stable operation range due to the reduction of the Casimir force, while for the poor conductive materials, the opposite takes place. For periodically driven dissipative systems, the Melnikov function and Poincare portrait analysis have shown that for poor conductive systems, the nonequilibrium Casimir forces lead to an increased possibility for chaotic behavior and stiction with an increasing temperature difference between the actuating components. However, for good conducting systems, the thermal contribution to Casimir forces reduces the possibility for chaotic behavior with increasing temperature, as comparison with systems without thermal fluctuations shows. Nevertheless, the positive benefit of good conductors toward increased actuation stability and reduced the chaotic behavior under nonequilibrium conditions can be easily compromised by any voltage application. Therefore, thermal, nonequilibrium Casimir forces can influence the actuation of devices toward unstable and chaotic behavior in strong correlation with their optical properties, and associated conduction state, as well as applied electrostatic potentials.

1.
A. W.
Rodriguez
,
F.
Capasso
, and
S. G.
Johnson
, “
The Casimir effect in microstructured geometries
,”
Nat. Photonics
5
,
211
(
2011
).
2.
F.
Capasso
,
J. N.
Munday
,
D.
Iannuzzi
, and
H. B.
Chan
, “
Casimir forces and quantum electrodynamical torques: Physics and nanomechanics
,”
IEEE J. Sel. Top. Quant. Electron.
13
,
400
(
2007
).
3.
M.
Bordag
,
G. L.
Klimchitskaya
,
U.
Mohideen
, and
V. M.
Mostepanenko
,
Advances in the Casimir Effect
(
Oxford University Press
,
New York
,
2009
).
4.
R. S.
Decca
,
D.
López
,
E.
Fischbach
,
G. L.
Klimchitskaya
,
D. E.
Krause
, and
V. M.
Mostepanenko
, “
Precise comparison of theory and new experiment for the Casimir force leads to stronger constraints on thermal quantum effects and long-range interactions
,”
Ann. Phys.
318
,
37
(
2005
);
R. S.
Decca
,
D.
López
,
E.
Fischbach
,
G. L.
Klimchitskaya
,
D. E.
Krause
, and
V. M.
Mostepanenko
Tests of new physics from precise measurements of the Casimir pressure between two gold-coated plates
,”
Phys. Rev. D
75
,
077101
(
2007
).
5.
A.
Ashourvan
,
M. F.
Miri
, and
R.
Golestanian
, “
Noncontact rack and pinion powered by the lateral Casimir force
,”
Phys. Rev. Lett.
98
,
140801
(
2007
).
6.
M. F.
Miri
and
R.
Golestanian
, “
A frustrated nanomechanical device powered by the lateral Casimir force
,”
Appl. Phys. Lett.
92
,
113103
(
2008
).
7.
A.
Ashourvan
,
M. F.
Miri
, and
R.
Golestanian
, “
Rectification of the lateral Casimir force in a vibrating noncontact rack and pinion
,”
Phys. Rev. E
75
,
040103
(
2007
).
8.
F. M.
Serry
,
D.
Walliser
, and
G. J.
Maclay
, “
The role of the casimir effect in the static deflection and stiction of membrane strips in microelectromechanical systems (MEMS)
,”
J. Appl. Phys.
84
,
2501
(
1998
);
F. M.
Serry
,
D.
Walliser
, and
G. J.
Maclay
, “
The role of the Casimir effect in the static deflection and stiction of membrane strips in microelectromechanical systems (MEMS)
,”
J. Microelectromech. Syst.
4
,
193
(
1995
);
G.
Palasantzas
and
J. T. M.
DeHosson
, “
Phase maps of microelectromechanical switches in the presence of electrostatic and Casimir forces
,”
Phys. Rev. B
72
,
121409
(
2005
);
G.
Palasantzas
and
J. T. M.
DeHosson
, “
Pull-in characteristics of electromechanical switches in the presence of Casimir forces: Influence of self-affine surface roughness
,”
Phys. Rev. B
72
,
115426
(
2005
).
9.
F. W.
DelRio
,
M. P.
de Boer
,
J. A.
Knapp
,
E. D.
Reedy
, Jr.
,
P. J.
Clews
, and
M. L.
Dunn
, “
The role of van der Waals forces in adhesion of micromachined surfaces
,”
Nat. Mater.
4
,
629
(
2005
).
10.
H. B. G.
Casimir
, “
Zero point energy effects on quantum electrodynamics
,”
Proc. K. Ned. Akad. Wet.
51
,
793
(
1948
).
11.
E. M.
Lifshitz
, “
The theory of molecular attractive forces between solids
,”
Sov. Phys. JETP
2
,
73
(
1956
);
I. E.
Dzyaloshinskii
,
E. M.
Lifshitz
, and
L. P.
Pitaevskii
, “
General theory of van der waals forces
,”
Sov. Phys. Usp.
4
,
153
(
1961
).
12.
P.
Ball
, “
Fundamental physics: Feel the force
,”
Nature
447
,
77
(
2007
).
13.
H. G.
Craighead
, “
Nanoelectromechanical systems
,”
Science
290
,
1532
(
2000
).
14.
F.
Chen
,
G. L.
Klimchitskaya
,
V. M.
Mostepanenko
, and
U.
Mohideen
, “
Demonstration of optically modulated dispersion forces
,”
Opt. Express
15
,
4823
(
2007
);
[PubMed]
G.
Torricelli
,
I.
Pirozhenko
,
S.
Thornton
,
A.
Lambrecht
, and
C.
Binns
, “
Casimir force between a metal and a semimetal
,”
Europhys. Lett.
93
,
51001
(
2011
).
15.
S.
de Man
,
K.
Heeck
,
R. J.
Wijngaarden
, and
D.
Iannuzzi
, “
Halving the Casimir force with conductive oxides
,”
Phys. Rev. Lett.
103
,
040402
(
2009
).
16.
G.
Torricelli
,
P. J.
van Zwol
,
O.
Shpak
,
C.
Binns
,
G.
Palasantzas
,
B. J.
Kooi
,
V. B.
Svetovoy
, and
M.
Wuttig
, “
Switching Casimir forces with phase-change materials
,”
Phys. Rev. A
82
,
010101 (R)
(
2010
).
17.
G.
Torricelli
,
P. J.
van Zwol
,
O.
Shpak
,
G.
Palasantzas
,
V. B.
Svetovoy
,
C.
Binns
,
B. J.
Kooi
,
P.
Jost
, and
M.
Wuttig
, “
Casimir force contrast between amorphous and crystalline phases of AIST
,”
Adv. Funct. Mater.
22
,
3729
(
2012
).
18.
C.-C.
Chang
,
A. A.
Banishev
,
G. L.
Klimchitskaya
,
V. M.
Mostepanenko
, and
U.
Mohideen
, “
Reduction of the Casimir force from indium tin oxide film by UV treatment
,”
Phys. Rev. Lett.
107
,
090403
(
2011
).
19.
V. B.
Svetovoy
,
P. J.
van Zwol
,
G.
Palasantzas
, and
J. T. M.
DeHosson
, “
Optical properties of gold films and the Casimir force
,”
Phys. Rev. B
77
,
035439
(
2008
);
G.
Bimonte
, “
Making precise predictions of the Casimir force between metallic plates via a weighted Kramers-Kronig transform
,”
Phys. Rev. A
83
,
042109
(
2011
).
20.
A.
Canaguier-Durand
,
P. A.
Maia Neto
,
A.
Lambrecht
, and
S.
Reynaud
, “
Thermal Casimir effect for drude metals in the plane-sphere geometry
,”
Phys. Rev. A
82
,
012511
(
2010
).
21.
F.
Tajik
,
M.
Sedighi
,
M.
Khorrami
,
A. A.
Masoudi
, and
G.
Palasantzas
, “
Chaotic behavior in Casimir oscillators: A case study for phase-change materials
,”
Phys. Rev. E
96
,
042215
(
2017
);
[PubMed]
F.
Tajik
,
M.
Sedighi
, and
G.
Palasantzas
, “
Sensitivity on materials optical properties of single beam torsional Casimir actuation
,”
J. Appl. Phys.
121
,
174302
(
2017
).
22.
F.
Tajik
,
M.
Sedighi
,
M.
Khorrami
,
A. A.
Masoudi
,
H.
Waalkens
, and
G.
Palasantzas
, “
Dependence of chaotic behavior on optical properties and electrostatic effects in double-beam torsional Casimir actuation
,”
Phys. Rev. E
98
,
02210
(
2018
).
23.
J. A.
Pelesko
and
D. H.
Bernstein
,
Modeling MEMS and NEMS
(
Chapman & Hall/CRC
,
Boca Raton
,
FL
,
2003
).
24.
P. M.
Osterberg
, “
Electrostatically actuated microelectromechanical test structures for material property measurement
,”
Ph.D. thesis
(
MIT
,
1995
).
25.
O.
Bochobza-Degani
and
Y.
Nemirovsky
, “
Modeling the pull-in parameters of electrostatic actuators with a novel lumped two degrees of freedom pull-in model
,”
Sens. Actuators A
97
,
569
(
2002
).
26.
M.
Sedighi
,
W. H.
Broer
,
G.
Palasantzas
, and
B. J.
Kooi
, “
Sensitivity of micromechanical actuation on amorphous to crystalline phase transformations under the influence of Casimir forces
,”
Phys. Rev. B
88
,
165423
(
2013
).
27.
M.
Sedighi
and
G.
Palasantzas
, “
Casimir and hydrodynamic force influence on microelectromechanical system actuation in ambient conditions
,”
Appl. Phys. Lett.
104
,
074108
(
2014
).
28.
M.
Sedighi
and
G.
Palasantzas
, “
Influence of low optical frequencies on actuation dynamics of microelectromechanical systems via Casimir forces
,”
J. Appl. Phys.
117
,
144901
(
2015
).
29.
M.
Sedighi
,
V. B.
Svetovoy
,
W. H.
Broer
, and
G.
Palasantzas
, “
Casimir forces from conductive silicon carbide surfaces
,”
Phys. Rev. B
89
,
195440
(
2014
).
30.
G. L.
Klimchitskaya
,
V. M.
Mostepanenko
, and
R. I. P.
Sedmik
, “
Casimir pressure between metallic plates out of thermal equilibrium: Proposed test for the relaxation properties of free electrons
,”
Phys. Rev. A
100
,
022511
(
2019
).
31.
M.
Antezza
,
L. P.
Pitaevskii
,
S.
Stringari
, and
V. B.
Svetovoy
, “
Casimir-Lifshitz force out of thermal equilibrium
,”
Phys. Rev. A
77
,
022901
(
2008
).
32.
R.
Garcıa
and
R.
Perez
, “
Dynamic atomic force microscopy methods
,”
Surf. Sci. Rep.
47
,
197
(
2002
);
M.
Li
,
H. X.
Tang
, and
M. L.
Roukes
, “
Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications
,”
Nat. Nanotechnol.
2
,
114
(
2007
);
[PubMed]
D.
Rugar
,
R.
Budakian
,
H. J.
Mamin
, and
B. W.
Chui
, “
Single spin detection by magnetic resonance force microscopy
,”
Nature
430
,
329
(
2004
).
[PubMed]
33.
O.
Degani
and
Y.
Nemirovsky
, “
Design considerations of rectangular electrostatic torsion actuators with rectangular plates based on analytical pull-in expressions
,”
J. Microelectromech. Syst.
11
,
20
(
2002
).
34.
R. S.
Decca
,
D.
López
,
H. B.
Chan
,
E.
Fischbach
,
D. E.
Krause
, and
C. R.
Jamell
, “
Constraining new forces in the Casimir regime using the isoelectronic technique
,”
Phys. Rev. Lett.
94
,
240401
(
2005
);
R. S.
Decca
,
D.
López
,
E.
Fischbach
,
G. L.
Klimchitskaya
,
D. E.
Krause
, and
V. M.
Mostepanenko
, “
Novel constraints on light elementary particles and extra-dimensional physics from the Casimir effect
,”
Eur. Phys. J. C
51
,
963
(
2007
);
V. A.
Yampol’skii
,
S.
Savel’ev
,
Z. A.
Mayselis
,
S. S.
Apostolov
, and
S.
Nori
, “
Anomalous temperature dependence of the Casimir force for thin metal films
,”
Phys. Rev. Lett.
101
,
096803
(
2008
);
[PubMed]
I.
Brevik
,
S. A.
Ellingsen
, and
K. A.
Milton
, “
Thermal corrections to the Casimir effect
,”
New J. Phys.
8
,
236
(
2006
).
35.
W.
Broer
,
H.
Waalkens
,
V. B.
Svetovoy
,
J.
Knoester
, and
G.
Palasantzas
, “
Nonlinear actuation dynamics of driven Casimir oscillators with rough surfaces
,”
Phys. Rev. Appl.
4
,
054016
(
2015
).
36.
M. W.
Hirsch
,
S.
Smale
, and
R. L.
Devaney
,
Differential Equations, Dynamical Systems, and an Introduction to Chaos
(
Elsevier Academic Press
,
San Diego
,
CA
,
2004
).
You do not currently have access to this content.