We numerically and analytically analyze transitions between different synchronous states in a network of globally coupled phase oscillators with attractive and repulsive interactions. The elements within the attractive or repulsive group are identical, but natural frequencies of the groups differ. In addition to a synchronous two-cluster state, the system exhibits a solitary state, when a single oscillator leaves the cluster of repulsive elements, as well as partially synchronous quasiperiodic dynamics. We demonstrate how the transitions between these states occur when the repulsion starts to prevail over attraction.

1.
E.
Kaempfer
,
The History of Japan: Together with a Description of the Kingdom of Siam, 1690-92
(
AMS Press
,
1906
), Vol. 3.
2.
S. H.
Strogatz
,
D. M.
Abrams
,
A.
McRobie
,
B.
Eckhardt
, and
E.
Ott
, “
Theoretical mechanics: Crowd synchrony on the Millennium Bridge
,”
Nature
438
,
43
44
(
2005
).
3.
E. A.
Martens
,
S.
Thutupalli
,
A.
Fourrière
, and
O.
Hallatschek
, “
Chimera states in mechanical oscillator networks
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
10563
10567
(
2013
).
4.
S.
Watanabe
and
S. H.
Strogatz
, “
Constants of motion for superconducting Josephson arrays
,”
Physica D
74
,
197
253
(
1994
).
5.
P.
Richard
,
B. M.
Bakker
,
B.
Teusink
,
K.
Dam
, and
H. V.
Westerhoff
, “
Acetaldehyde mediates the synchronization of sustained glycolytic oscillations in populations of yeast cells
,”
Eur. J. Biochem.
235
,
238
241
(
1996
).
6.
A.
Prindle
,
P.
Samayoa
,
I.
Razinkov
,
T.
Danino
,
L. S.
Tsimring
, and
J.
Hasty
, “
A sensing array of radically coupled genetic ‘biopixels’
,”
Nature
481
,
39
44
(
2011
).
7.
D.
Hansel
,
G.
Mato
, and
C.
Meunier
, “
Clustering and slow switching in globally coupled phase oscillators
,”
Phys. Rev. E
48
,
3470
3477
(
1993
).
8.
Y.
Kuramoto
and
D.
Battogtokh
, “
Coexistence of coherence and incoherence in nonlocally coupled phase oscillators
,”
Nonlinear Phenom. Complex Syst.
5
,
380
385
(
2002
), http://www.j-npcs.org/abstracts/vol2002/v5no4/v5no4p380.html.
9.
V.
Hakim
and
W.-J.
Rappel
, “
Dynamics of the globally coupled complex Ginzburg-Landau equation
,”
Phys. Rev. A
46
,
R7347
R7350
(
1992
).
10.
A.
Hooper
and
R.
Grimshaw
, “
Travelling wave solutions of the Kuramoto-Sivashinsky equation
,”
Wave Motion
10
,
405
420
(
1988
).
11.
C.
Van Vreeswijk
, “
Partial synchronization in populations of pulse-coupled oscillators
,”
Phys. Rev. E
54
,
5522
(
1996
).
12.
M.
Rosenblum
and
A.
Pikovsky
, “
Self-organized quasiperiodicity in oscillator ensembles with global nonlinear coupling
,”
Phys. Rev. Lett.
98
,
064101
(
2007
).
13.
A.
Pikovsky
and
M.
Rosenblum
, “
Self-organized partially synchronous dynamics in populations of nonlinearly coupled oscillators
,”
Physica D
238
,
27
37
(
2009
).
14.
P.
Clusella
,
A.
Politi
, and
M.
Rosenblum
, “
A minimal model of self-consistent partial synchrony
,”
New J. Phys.
18
,
093037
(
2016
).
15.
Y.
Maistrenko
,
B.
Penkovsky
, and
M.
Rosenblum
, “
Solitary state at the edge of synchrony in ensembles with attractive and repulsive interactions
,”
Phys. Rev. E
89
,
060901
(
2014
).
16.
Y.
Kuramoto
,
Chemical Oscillations, Turbulence and Waves
(
Springer
,
Berlin
,
1984
).
17.
H.
Sakaguchi
and
Y.
Kuramoto
, “
A soluble active rotater model showing phase transitions via mutual entertainment
,”
Prog. Theor. Phys.
76
,
576
581
(
1986
).
18.
J. A.
Acebrón
,
L. L.
Bonilla
,
C. J. P.
Vicente
,
F.
Ritort
, and
R.
Spigler
, “
The Kuramoto model: A simple paradigm for synchronization phenomena
,”
Rev. Mod. Phys.
77
,
137
(
2005
).
19.
A.
Pikovsky
and
M.
Rosenblum
, “
Dynamics of globally coupled oscillators: Progress and perspectives
,”
Chaos
25
,
097616
(
2015
).
20.
D.
Pazó
, “
Thermodynamic limit of the first-order phase transition in the Kuramoto model
,”
Phys. Rev. E
72
,
046211
(
2005
).
21.
S.
Watanabe
and
S. H.
Strogatz
, “
Integrability of a globally coupled oscillator array
,”
Phys. Rev. Lett.
70
,
2391
2394
(
1993
).
22.
E.
Ott
and
T. M.
Antonsen
, “
Low dimensional behavior of large systems of globally coupled oscillators
,”
Chaos
18
,
037113
(
2008
).
23.
E.
Ott
and
T. M.
Antonsen
, “
Long time evolution of phase oscillator systems
,”
Chaos
19
,
023117
(
2009
).
24.
M.
Breakspear
,
S.
Heitmann
, and
A.
Daffertshofer
,
Generative models of cortical oscillations: Neurobiological implications of the Kuramoto model
,”
Front. Human Neurosci.
4
,
190
(
2010
).
25.
E.
Montbrió
,
J.
Kurths
, and
B.
Blasius
, “
Synchronization of two interacting populations of oscillators
,”
Phys. Rev. E
70
,
056125
(
2004
).
26.
D. M.
Abrams
,
R.
Mirollo
,
S. H.
Strogatz
, and
D. A.
Wiley
, “
Solvable model for chimera states of coupled oscillators
,”
Phys. Rev. Lett.
101
,
084103
(
2008
).
27.
E.
Barreto
,
B.
Hunt
,
E.
Ott
, and
P.
So
, “
Synchronization in networks of networks: The onset of coherent collective behavior in systems of interacting populations of heterogeneous oscillators
,”
Phys. Rev. E
77
,
036107
(
2008
).
28.
C.
Van Vreeswijk
,
L. F.
Abbott
, and
G.
Bard Ermentrout
, “
When inhibition not excitation synchronizes neural firing
,”
J. Comput. Neurosci.
1
,
313
321
(
1994
).
29.
L. S.
Tsimring
,
N. F.
Rulkov
,
M. L.
Larsen
, and
M.
Gabbay
, “
Repulsive synchronization in an array of phase oscillators
,”
Phys. Rev. Lett.
95
,
014101
(
2005
).
30.
A. V.
Pimenova
,
D. S.
Goldobin
,
M.
Rosenblum
, and
A.
Pikovsky
, “
Interplay of coupling and common noise at the transition to synchrony in oscillator populations
,”
Sci. Rep.
6
,
38518
(
2016
).
31.
H.
Hong
and
S. H.
Strogatz
, “
Kuramoto model of coupled oscillators with positive and negative coupling parameters: An example of conformist and contrarian oscillators
,”
Phys. Rev. Lett.
106
,
054102
(
2011
).
32.
H.
Hong
and
S. H.
Strogatz
, “
Conformists and contrarians in a Kuramoto model with identical natural frequencies
,”
Phys. Rev. E
84
,
046202
(
2011
).
33.
D.
Anderson
,
A.
Tenzer
,
G.
Barlev
,
M.
Girvan
,
T. M.
Antonsen
, and
E.
Ott
, “
Multiscale dynamics in communities of phase oscillators
,”
Chaos
22
,
013102
(
2012
).
34.
D.
Iatsenko
,
S.
Petkoski
,
P. V. E.
McClintock
, and
A.
Stefanovska
, “
Stationary and traveling wave states of the Kuramoto model with an arbitrary distribution of frequencies and coupling strengths
,”
Phys. Rev. Lett.
110
,
064101
(
2013
).
35.
V.
Vlasov
,
E. E. N.
Macau
, and
A.
Pikovsky
, “
Synchronization of oscillators in a Kuramoto-type model with generic coupling
,”
Chaos
24
,
023120
(
2014
).
36.
T.
Qiu
,
S.
Boccaletti
,
I.
Bonamassa
,
Y.
Zou
,
J.
Zhou
,
Z.
Liu
, and
S.
Guan
, “
Synchronization and Bellerophon states in conformist and contrarian oscillators
,”
Sci. Rep.
6
,
36713
(
2016
).
37.
H. R.
Wilson
and
J. D.
Cowan
, “
Excitatory and inhibitory interactions in localized populations of model neurons
,”
Biophys. J.
12
,
1
24
(
1972
).
38.
C.
Van Vreeswijk
and
H.
Sompolinsky
, “
Chaos in neuronal networks with balanced excitatory and inhibitory activity
,”
Science
274
,
1724
1726
(
1996
).
39.
A.
Peyrache
,
N.
Dehghani
,
E. N.
Eskandar
,
J. R.
Madsen
,
W. S.
Anderson
,
J. A.
Donoghue
,
L. R.
Hochberg
,
E.
Halgren
,
S. S.
Cash
, and
A.
Destexhe
, “
Spatiotemporal dynamics of neocortical excitation and inhibition during human sleep
,”
Proc. Natl. Acad. Sci. U.S.A.
109
,
1731
1736
(
2012
).
40.
N.
Dehghani
,
A.
Peyrache
,
B.
Telenczuk
,
M. L. V.
Quyen
,
E.
Halgren
,
S. S.
Cash
,
N. G.
Hatsopoulos
, and
A.
Destexhe
, “
Dynamic balance of excitation and inhibition in human and monkey neocortex
,”
Sci. Rep.
6
,
23176
(
2016
).
41.
S.
Brezetskyi
,
D.
Dudkowski
, and
T.
Kapitaniak
, “
Rare and hidden attractors in Van der Pol-Duffing oscillators
,”
Eur. Phys. J. Spec. Top.
224
,
1459
1467
(
2015
).
42.
P.
Jaros
,
Y.
Maistrenko
, and
T.
Kapitaniak
, “
Chimera states on the route from coherence to rotating waves
,”
Phys. Rev. E
91
,
022907
(
2015
).
43.
T.
Chouzouris
,
I.
Omelchenko
,
A.
Zakharova
,
J.
Hlinka
,
P.
Jiruska
, and
E.
Schöll
, “
Chimera states in brain networks: Empirical neural vs. modular fractal connectivity
,”
Chaos
28
,
045112
(
2018
).
44.
B.
Chen
,
J. R.
Engelbrecht
, and
R.
Mirollo
, “
Dynamics of the Kuramoto-Sakaguchi oscillator network with asymmetric order parameter
,”
Chaos
29
,
013126
(
2019
).
45.
S.
Majhi
,
T.
Kapitaniak
, and
D.
Ghosh
, “
Solitary states in multiplex networks owing to competing interactions
,”
Chaos
29
,
013108
(
2019
).
46.
E.
Rybalova
,
N.
Semenova
,
G.
Strelkova
, and
V.
Anishchenko
, “
Transition from complete synchronization to spatio-temporal chaos in coupled chaotic systems with nonhyperbolic and hyperbolic attractors
,”
Eur. Phys. J. Spec. Top.
226
,
1857
1866
(
2017
).
47.
N. I.
Semenova
,
E. V.
Rybalova
,
G. I.
Strelkova
, and
V. S.
Anishchenko
, “
‘Coherence–incoherence’ transition in ensembles of nonlocally coupled chaotic oscillators with nonhyperbolic and hyperbolic attractors
,”
Regular Chaotic Dyn.
22
,
148
162
(
2017
).
48.
P.
Jaros
,
S.
Brezetsky
,
R.
Levchenko
,
D.
Dudkowski
,
T.
Kapitaniak
, and
Y.
Maistrenko
, “
Solitary states for coupled oscillators with inertia
,”
Chaos
28
,
011103
(
2018
).
49.
N.
Semenova
,
T.
Vadivasova
, and
V.
Anishchenko
, “
Mechanism of solitary state appearance in an ensemble of nonlocally coupled Lozi maps
,”
Eur. Phys. J. Spec. Top.
227
,
1173
1183
(
2018
).
50.
I. A.
Shepelev
,
G. I.
Strelkova
, and
V. S.
Anishchenko
, “
Chimera states and intermittency in an ensemble of nonlocally coupled Lorenz systems
,”
Chaos
28
,
063119
(
2018
).
51.
E.
Rybalova
,
G.
Strelkova
, and
V.
Anishchenko
, “
Mechanism of realizing a solitary state chimera in a ring of nonlocally coupled chaotic maps
,”
Chaos Solitons Fractals
115
,
300
305
(
2018
).
52.
M.
Mikhaylenko
,
L.
Ramlow
,
S.
Jalan
, and
A.
Zakharova
, “
Weak multiplexing in neural networks: Switching between chimera and solitary states
,”
Chaos
29
,
023122
(
2019
).
53.
K.
Sathiyadevi
,
V. K.
Chandrasekar
,
D. V.
Senthilkumar
, and
M.
Lakshmanan
, “
Long-range interaction induced collective dynamical behaviors
,”
J. Phys. A Math. Theor.
52
,
184001
(
2019
).
54.
T.
Kapitaniak
,
P.
Kuzma
,
J.
Wojewoda
,
K.
Czolczynski
, and
Y.
Maistrenko
, “
Imperfect chimera states for coupled pendula
,”
Sci. Rep.
4
,
6379
(
2014
).
55.
J.
Hizanidis
,
N.
Lazarides
,
G.
Neofotistos
, and
G.
Tsironis
, “
Chimera states and synchronization in magnetically driven SQUID metamaterials
,”
Eur. Phys. J. Spec. Top.
225
,
1231
1243
(
2016
).
56.
A.
Pikovsky
and
M.
Rosenblum
, “
Partially integrable dynamics of hierarchical populations of coupled oscillators
,”
Phys. Rev. Lett.
101
,
264103
(
2008
).
57.
A.
Yeldesbay
,
A.
Pikovsky
, and
M.
Rosenblum
, “
Chimeralike states in an ensemble of globally coupled oscillators
,”
Phys. Rev. Lett.
112
,
144103
(
2014
).
58.
R.
Adler
, “
A study of locking phenomena in oscillators
,”
Proc. IRE
34
,
351
357
(
1946
).
59.
A.
Pikovsky
and
M.
Rosenblum
, “
Dynamics of heterogeneous oscillator ensembles in terms of collective variables
,”
Physica D
240
,
872
881
(
2011
).
60.
S. A.
Marvel
,
R. E.
Mirollo
, and
S. H.
Strogatz
, “
Identical phase oscillators with global sinusoidal coupling evolve by Möbius group action
,”
Chaos
19
,
043104
(
2009
).
61.
A.
Pikovsky
, private communication (
2014
).
62.
J. R.
Engelbrecht
and
R.
Mirollo
, “
Classification of attractors for systems of identical coupled Kuramoto oscillators
,”
Chaos
24
,
013114
(
2014
).
63.
The attractive group remained fully synchronized even when the units were made nonidentical by sampling the frequencies from a normal distribution with zero mean and standard deviation of 103. Hence, the stability of the attractive group is not a numerical artifact.
64.
In the following, the time-averaged quantities are denoted by overlined letters.
65.
To obtain these quantities, we have averaged the frequencies over the time interval of 500 units, after the transient of 1000 units.
66.
Even for such large values as ω=1 and ε=1, the smallest observed order parameter over 100 different initial conditions was 0.08, with the average being 0.2.
67.
We remind that we use the frame, corotating with the natural frequency of oscillators in the attractive group.
68.
M. A.
Zaks
and
P.
Tomov
, “
Onset of time dependence in ensembles of excitable elements with global repulsive coupling
,”
Phys. Rev. E
93
,
020201
(
2016
).
69.
Y.
Baibolatov
,
M.
Rosenblum
,
Z. Z.
Zhanabaev
,
M.
Kyzgarina
, and
A.
Pikovsky
, “
Periodically forced ensemble of nonlinearly coupled oscillators: From partial to full synchrony
,”
Phys. Rev. E
80
,
046211
(
2009
).
You do not currently have access to this content.