Machine learning is a promising approach for electroencephalographic (EEG) trials classification. Its efficiency is largely determined by the feature extraction and selection techniques reducing the dimensionality of input data. Dimensionality reduction is usually implemented via the mathematical approaches (e.g., principal component analysis, linear discriminant analysis, etc.) regardless of the origin of analyzed data. We hypothesize that since EEG features are determined by certain neurophysiological processes, they should have distinctive characteristics in spatiotemporal domain. If so, it is possible to specify the set of EEG principal features based on the prior knowledge about underlying neurophysiological processes. To test this hypothesis, we consider the classification of EEG trials related to the perception of ambiguous visual stimuli. We observe that EEG features, underlying the different ambiguous stimuli interpretations, are defined by the network properties of neuronal activity. Having analyzed functional neural interactions, we specify the brain area in which neural network architecture exhibits differences for different classes of EEG trials. We optimize the feedforward multilayer perceptron and develop a strategy for the training set selection to maximize the classification accuracy, being 85% when all channels are used. The revealed localization of the percept-related features allows about 95% accuracy, when the number of channels is reduced up to 90%. Obtained results can be used for classification of EEG trials associated with more complex cognitive tasks. Taking into account that cognitive activity is subserved by a distributed functional cortical network, its topological properties have to be considered when selecting optimal features for EEG trial classification.

1.
B.
Lusch
,
J. N.
Kutz
, and
S. L.
Brunton
, “
Deep learning for universal linear embeddings of nonlinear dynamics
,”
Nat. Commun.
9
,
4950
(
2018
).
2.
T.
Weng
,
H.
Yang
,
C.
Gu
,
J.
Zhang
, and
M.
Small
, “
Synchronization of chaotic systems and their machine-learning models
,”
Phys. Rev. E
99
,
042203
(
2019
).
3.
J.
Pathak
,
Z.
Lu
,
B. R.
Hunt
,
M.
Girvan
, and
E.
Ott
, “
Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data
,”
Chaos
27
,
121102
(
2017
).
4.
Z.
Lu
,
B. R.
Hunt
, and
E.
Ott
, “
Attractor reconstruction by machine learning
,”
Chaos
28
,
061104
(
2018
).
5.
D.
Ibáñez-Soria
,
J.
Garcia-Ojalvo
,
A.
Soria-Frisch
, and
G.
Ruffini
, “
Detection of generalized synchronization using echo state networks
,”
Chaos
28
,
033118
(
2018
).
6.
Y.
Ma
,
X.
Ding
,
Q.
She
,
Z.
Luo
,
T.
Potter
, and
Y.
Zhang
, “
Classification of motor imagery EEG signals with support vector machines and particle swarm optimization
,”
Comput. Math. Methods Med.
2016
,
4941235
.
7.
A. W. L.
Chiu
,
S. S.
Jahromi
,
H.
Khosravani
,
P. L.
Carlen
, and
B. L.
Bardakjian
, “
The effects of high-frequency oscillations in hippocampal electrical activities on the classification of epileptiform events using artificial neural networks
,”
J. Neural Eng.
3
,
9
(
2006
).
8.
A. E.
Hramov
,
N. S.
Frolov
,
V. A.
Maksimenko
,
V. V.
Makarov
,
A. A.
Koronovskii
,
J.
Garcia-Prieto
,
L. F.
Antón-Toro
,
F.
Maestú
, and
A. N.
Pisarchik
, “
Artificial neural network detects human uncertainty
,”
Chaos
28
,
033607
(
2018
).
9.
M.
Hajinoroozi
,
Z.
Mao
,
T.-P.
Jung
,
C.-T.
Lin
, and
Y.
Huang
, “
EEG-based prediction of driver’s cognitive performance by deep convolutional neural network
,”
Signal Process. Image Commun.
47
,
549
555
(
2016
).
10.
V. A.
Maksimenko
,
S. A.
Kurkin
,
E. N.
Pitsik
,
V. Y.
Musatov
,
A. E.
Runnova
,
T. Y.
Efremova
,
A. E.
Hramov
, and
A. N.
Pisarchik
, “
Artificial neural network classification of motor-related EEG: An increase in classification accuracy by reducing signal complexity
,”
Complexity
2018
,
9385947
(
2018
).
11.
A. E.
Hramov
,
V. A.
Maksimenko
,
S. V.
Pchelintseva
,
A. E.
Runnova
,
V. V.
Grubov
,
V. Y.
Musatov
,
M. O.
Zhuravlev
,
A. A.
Koronovskii
, and
A. N.
Pisarchik
, “
Classifying the perceptual interpretations of a bistable image using EEG and artificial neural networks
,”
Front. Neurosci.
11
,
674
(
2017
).
12.
E. S.
Nurse
,
P. J.
Karoly
,
D. B.
Grayden
, and
D. R.
Freestone
, “
A generalizable brain-computer interface (BCI) using machine learning for feature discovery
,”
PLoS One
10
,
0131328
(
2015
).
13.
K.
Bowsher
,
E. F.
Civillico
,
J.
Coburn
,
J.
Collinger
,
J. L.
Contreras-Vidal
,
T.
Denison
,
J.
Donoghue
,
J.
French
,
N.
Getzoff
,
L. R.
Hochberg
,
M.
Hoffmann
,
J.
Judy
,
N.
Kleitman
,
G.
Knaack
,
V.
Krauthamer
,
K.
Ludwig
,
M.
Moynahan
,
J. J.
Pancrazio
,
P. H.
Peckham
,
C.
Pena
,
V.
Pinto
,
T.
Ryan
,
D.
Saha
,
H.
Scharen
,
S.
Shermer
,
K.
Skodacek
,
P.
Takmakov
,
D.
Tyler
,
S.
Vasudevan
,
K.
Wachrathit
,
D.
Weber
,
C. G.
Welle
, and
M.
Ye
, “
Brain-computer interface devices for patients with paralysis and amputation: A meeting report
,”
J. Neural Eng.
13
,
023001
(
2016
).
14.
L. R.
Quitadamo
,
F.
Cavrini
,
L.
Sbernini
,
F.
Riillo
,
L.
Bianchi
,
S.
Seri
, and
G.
Saggio
, “
Support vector machines to detect physiological patterns for EEG and EMG-based human-computer interaction: A review
,”
J. Neural Eng.
14
,
011001
(
2017
).
15.
M. C.
Åberg
and
J.
Wessberg
, “
Evolutionary optimization of classifiers and features for single-trial EEG discrimination
,”
Biomed. Eng. Online
6
,
32
32
(
2007
).
16.
F. G.
Alpert
,
R.
Manor
,
A. B.
Spanier
,
L. Y.
Deouell
, and
A. B.
Geva
, “
Spatiotemporal representations of rapid visual target detection: A single-trial EEG classification algorithm
,”
IEEE Trans. Biomed. Eng.
61
,
2290
2303
(
2014
).
17.
J. C. G. D.
Costa
,
P. J. G.
Da-Silva
,
R. M. V. R.
Almeida
, and
A. F. C.
Infantosi
, “
Validation in principal components analysis applied to EEG data
,”
Comput. Math. Methods Med.
2014
,
413801
.
18.
A. A.
Putilov
, “
Principal component analysis of the EEG spectrum can provide yes-or-no criteria for demarcation of boundaries between NREM sleep stages
,”
Sleep Sci.
8
,
16
23
(
2015
).
19.
R.
Zhang
,
P.
Xu
,
L.
Guo
,
Y.
Zhang
,
P.
Li
, and
D.
Yao
, “
Z-score linear discriminant analysis for EEG based brain-computer interfaces
,”
PLoS One
8
,
e74433
(
2013
).
20.
E.
Neto
,
F.
Biessmann
,
H.
Aurlien
,
H.
Nordby
, and
T.
Eichele
, “
Regularized linear discriminant analysis of EEG features in dementia patients
,”
Front. Aging Neurosci.
8
,
273
(
2016
).
21.
H.
Li
,
D.
Yuan
,
X.
Ma
,
D.
Cui
, and
L.
Cao
, “
Genetic algorithm for the optimization of features and neural networks in ECG signals classification
,”
Sci. Rep.
7
,
41011
(
2017
).
22.
J.
Yang
,
H.
Singh
,
E. L.
Hines
,
F.
Schlaghecken
,
D. D.
Iliescu
,
M. S.
Leeson
, and
N. G.
Stocks
, “
Channel selection and classification of electroencephalogram signals: An artificial neural network and genetic algorithm-based approach
,”
Artif. Intell. Med.
55
,
117
126
(
2012
).
23.
S. B.
Nanthini
and
B.
Santhi
, “
Electroencephalogram signal classification for automated epileptic seizure detection using genetic algorithm
,”
J. Nat. Sci. Biol. Med.
8
,
159
166
(
2017
).
24.
S.
Smith
, “
Linking cognition to brain connectivity
,”
Nat. Neurosci.
19
,
7
(
2016
).
25.
J.
Kornmeier
,
E.
Friedel
,
M.
Wittmann
, and
H.
Atmanspacher
, “
EEG correlates of cognitive time scales in the Necker-Zeno model for bistable perception
,”
Conscious. Cogn.
53
,
136
150
(
2017
).
26.
P.
Chholak
,
G.
Niso
,
V. A.
Maksimenko
,
S. A.
Kurkin
,
N. S.
Frolov
,
E. N.
Pitsik
,
A. E.
Hramov
, and
A. N.
Pisarchik
, “
Visual and kinesthetic modes affect motor imagery classification in untrained subjects
,”
Sci. Rep.
9
,
9838
(
2019
).
27.
World Medical Association
,
“World Medical Association (2000) Declaration of Helsinki: Ethical principles for medical research involving human subjects
,”
J. Am. Med. Assoc.
284
,
3043
3045
(
2000
).
28.
L. A.
Necker
, “
Observations on some remarkable phenomena seen in Switzerland; and an optical phenomenon which occurs on viewing of a crystal or geometrical solid
,”
Philos. Mag.
3
,
329
343
(
1832
).
29.
A. N.
Pisarchik
,
R.
Jaimes-Reategui
,
C. D. A.
Magallón-Garcia
, and
C. O.
Castillo-Morales
, “
Critical slowing down and noise-induced intermittency in bistable perception: Bifurcation analysis
,”
Biol. Cybern.
108
,
397
404
(
2014
).
30.
A.
Pastukhov
,
P. E.
García-Rodriguez
,
J.
Haenicke
,
A.
Guillamon
,
G.
Deco
, and
J.
Braun
, “
Multi-stable perception balances stability and sensitivity
,”
Front. Comput. Neurosci.
7
,
17
(
2013
).
31.
R. H. S.
Carpenter
, “
Analysing the detail of saccadic reaction time distributions
,”
Biocybern. Biomed. Eng.
32
,
49
63
(
2012
).
32.
I.
Merk
and
J.
Schnakenberg
, “
A stochastic model of multistable visual perception
,”
Biol. Cybern.
86
,
111
116
(
2002
).
33.
D. A.
Leopold
,
M.
Wilke
,
A.
Maier
, and
N. K.
Logothetis
, “
Stable perception of visually ambiguous patterns
,”
Nat. Neurosci.
5
,
605
609
(
2002
).
34.
J.
Kornmeier
,
W.
Ehn
,
H.
Bigalke
, and
M.
Bach
, “
Discontinuous presentation of ambiguous figures: How interstimulus-interval durations affect reversal dynamics and ERPs
,”
Psychophysiology
44
,
552
(
2007
).
35.
E.
Niedermeyer
and
F. L.
da Silva
,
Electroencephalography: Basic Principles, Clinical Applications, and Related Fields
(
Lippincot Williams & Wilkins
,
2004
).
36.
S.
Haykin
,
Neural Networks: A Comprehensive Foundation
, 3rd ed. (
Pearson
,
2008
).
37.
R.
Duda
and
P.
Hart
,
Pattern Classification and Scene Analysis
(
Wiley
,
New York
,
1973
).
38.
E.
Haselsteiner
and
G.
Pfutscheller
, “
Using time-dependent neural networks for EEG classification
,”
IEEE Trans. Rehabil. Eng.
8
,
457
463
(
2000
).
39.
C. L.
Fontoura da
and
J. R. M.
Cesar
,
Shape Analysis and Classification: Theory and Practice
(
CRC Press
,
Boca Raton, FL
,
2001
).
40.
D.
Garrett
,
D. A.
Peterson
,
C. W.
Anderson
, and
M. H.
Thaut
, “
Comparison of linear, nonlinear, and feature selection methods for EEG signal classification
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
11
,
141
144
(
2003
).
41.
N. S.
Dias
,
M.
Kamrunnahar
,
P. M.
Mendes
,
S. J.
Schiff
, and
J. H.
Correia
, “
Comparison of EEG pattern classification methods for brain-computer interfaces
,”
Conf. Proc. IEEE Eng. Med. Biol. Soc.
2007
,
2540
(
2007
).
42.
M. R.
Hasan
,
M. I.
Ibrahimy
,
S. M.
Motakabber
, and
S.
Shahid
,
Classification of Multichannel EEG Signal by Linear Discriminant Analysis
(
Springer International Publishing
,
2015
), Chap. 0,
279
282
.
43.
X.
Yao
, “
Evolving artificial neural networks
,”
Proc. IEEE
87
,
1423
1447
(
1999
).
44.
G.
Cybenko
, “Approximation by superpositions of a sigmoidal function,” in Mathematics of Control, Signals, and Systems (Springer International, 2006), pp. 303–314.
45.
T.
Strutz
,
Data Fitting and Uncertainty (A Practical Introduction to Weighted Least Squares and Beyond)
, 2nd ed. (
Springer
,
2016
).
46.
B.
Torresani
,
Continuous Wavelet Transform
(
Savoire
,
Paris
,
1995
).
47.
A. N.
Pavlov
,
A. E.
Hramov
,
A. A.
Koronovskii
,
Y. E.
Sitnikova
,
V. A.
Makarov
, and
A. A.
Ovchinnikov
, “
Wavelet analysis in neurodynamics
,”
Phys-Usp+
55
,
845
875
(
2012
).
48.
V. A.
Maksimenko
,
A.
Luttjohann
,
V. V.
Makarov
,
M. V.
Goremyko
,
A. A.
Koronovskii
,
V. O.
Nedaivozov
,
A. E.
Runnova
,
G.
Van Luijtelaar
,
A. E.
Hramov
, and
S.
Boccaletti
, “
Macroscopic and microscopic spectral properties of brain networks during local and global synchronization
,”
Phys. Rev. E
96
,
012316
(
2017
).
49.
V. V.
Makarov
,
M. O.
Zhuravlev
,
A. E.
Runnova
,
P.
Protasov
,
V. A.
Maksimenko
,
N. S.
Frolov
,
A. N.
Pisarchik
, and
A. E.
Hramov
, “
Betweenness centrality in multiplex brain network during mental task evaluation
,”
Phys. Rev. E
98
,
062413
(
2018
).
50.
A. E.
Hramov
,
A. A.
Koronovskii
,
V. A.
Makarov
,
A. N.
Pavlov
, and
E.
Sitnikova
, Wavelets in Neuroscience, Springer Series in Synergetics (Springer, Heidelberg, 2015).
51.
V. A.
Maksimenko
,
A. E.
Runnova
,
N. S.
Frolov
,
V. V.
Makarov
,
V.
Nedaivozov
,
A. A.
Koronovskii
,
A.
Pisarchik
, and
A. E.
Hramov
, “
Multiscale neural connectivity during human sensory processing in the brain
,”
Phys. Rev. E
97
,
052405
(
2018
).
52.
F.
Tong
,
M.
Meng
, and
R.
Blake
, “
Neural bases of binocular rivalry
,”
Trends Cogn. Sci. (Regul. Ed.)
10
,
502
511
(
2006
).
53.
P.
Sterzer
,
A.
Kleinschmidt
, and
G.
Rees
, “
The neural bases of multistable perception
,”
Trends Cogn. Sci. (Regul. Ed.)
13
,
310
318
(
2009
).
54.
T.
Inui
,
S.
Tanaka
,
T.
Okada
,
S.
Nishizawa
,
M.
Katayama
, and
J.
Konishi
, “
Neural substrates for depth perception of the Necker cube; a functional magnetic resonance imaging study in human subjects
,”
Neurosci. Lett.
282
,
145
(
2000
).
55.
T. J.
Müller
,
A.
Federspiel
,
H.
Horn
,
K.
Lovblad
,
C.
Lehmann
,
T.
Dierks
, and
W.
Strick
, “
The neurophysiological time pattern of illusionary visual perceptual transitions: A simultaneous EEG and fMRI study
,”
Int. J. Psychophysiol.
55
,
299
(
2005
).
56.
R.
Desimone
and
J.
Duncan
, “
Neural mechanisms of selective visual attention
,”
Annu. Rev. Neurosci.
18
,
193
222
(
1995
).
57.
T.
Ergenoglu
,
T.
Demiralp
,
Z.
Bayraktaroglu
,
M.
Ergen
,
H.
Beydagi
, and
Y.
Uresin
, “
Alpha rhythm of the EEG modulates visual detection performance in humans
,”
Cogn. Brain Res.
20
,
376
383
(
2004
).
58.
P. C. J.
Taylor
and
G.
Thut
, “
Brain activity underlying visual perception and attention as inferred from TMS–EEG: A review
,”
Brain Stimul.
5
,
124
129
(
2012
).
59.
A. C.
Nobre
, “
The attentive homunculus: Now you see it, now you don’t
,”
Neurosci. Biobehav. Rev.
25
,
477
496
(
2001
).
60.
M.
Corbetta
and
G. L.
Shulman
, “
Control of goal-directed and stimulus-driven attention in the brain
,”
Nat. Rev. Neurosci.
3
,
201
(
2002
).
61.
R.
Chai
,
S. H.
Ling
,
G. P.
Hunter
, and
H. T.
Nguyen
, “Toward fewer EEG channels and better feature extractor of non-motor imagery mental tasks classification for a wheelchair thought controller,” in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2012), pp. 5266–5269.
62.
Y.
Wang
,
S.
Gao
, and
X.
Gao
, “Common spatial pattern method for channel selection in motor imagery based brain-computer interface,” in 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE-EMBS), 2005 (IEEE, 2006), pp. 5392–5395.
63.
A.
Piryatinska
,
W. A.
Woyczynski
,
M. S.
Scher
, and
K. A.
Loparo
, “
Optimal channel selection for analysis of EEG-sleep patterns of neonates
,”
Comput. Methods Programs Biomed.
106
,
14
26
(
2012
).
64.
B. R.
Greene
,
G. B.
Boylan
,
W. P.
Marnane
,
G.
Lightbody
, and
S.
Connolly
, “Automated single channel seizure detection in the neonate,” in 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2008), pp. 915–918.
65.
M.
Li
,
J.
Ma
, and
S.
Jia
, “Optimal combination of channels selection based on common spatial pattern algorithm,” in 2011 IEEE International Conference on Mechatronics and Automation (IEEE, 2011), pp. 295–300.
66.
T. N.
Lal
,
M.
Schroder
,
T.
Hinterberger
,
J.
Weston
,
M.
Bogdan
,
N.
Birbaumer
, and
B.
Scholkopf
, “
Support vector channel selection in BCI
,”
IEEE Trans. Biomed. Eng.
51
,
1003
1010
(
2004
).
67.
C. J.
Bell
,
P.
Shenoy
,
R.
Chalodhorn
, and
R.
Rao
, “
Control of a humanoid robot by a noninvasive brain computer interface in humans
,”
J. Neural Eng.
5
,
214
(
2008
).
68.
D. J.
McFarland
,
M. A.
Parvaz
,
W. A.
Sarnacki
,
R. Z.
Goldstein
, and
J. R.
Wolpaw
, “
Prediction of subjective ratings of emotional pictures by EEG features
,”
J. Neural Eng.
14
,
016009
(
2017
).
69.
E.
Yom-Tov
and
G. F.
Inbar
, “
Feature selection for the classification of movements from single movement-related potentials
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
10
,
170
177
(
2002
).
70.
K. K.
Ang
,
K. S. G.
Chua
,
K. S.
Phua
,
C.
Wang
,
Z. Y.
Chin
,
C. W. K.
Kuah
,
W.
Low
, and
C.
Guan
, “
A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke
,”
Clin. EEG Neurosci.
46
,
310
320
(
2015
).
71.
A. A.
Ovchinnikov
,
A.
Luttjohann
,
A. E.
Hramov
, and
G.
van Luijtelaar
, “
An algorithm for real-time detection of spike-wave discharges in rodents
,”
J. Neurosci. Methods
194
,
172
178
(
2010
).
72.
V. A.
Maksimenko
,
S.
Heukelum van
,
V. V.
Makarov
,
J.
Kelderhuis
,
A.
Luttjohann
,
A. A.
Koronovskii
,
A. E.
Hramov
, and
G.
Luijtelaar van
, “
Absence seizure control by a brain computer interface
,”
Sci. Rep.
7
,
2487
(
2017
).
73.
A.
Ferrante
,
C.
Gavriel
, and
A.
Faisal
, “Data-efficient hand motor imagery decoding in EEG-BCI by using Morlet wavelets & common spatial pattern algorithms,” in 7th International IEEE/EMBS Conference on Neural Engineering (NER) (IEEE, 2015), p. 948.
74.
B.
Blankertz
,
G.
Dornhege
,
M.
Krauledat
,
K. R.
Muller
, and
G.
Curio
, “
The non-invasive Berlin brain-computer interface: Fast acquisition of effective performance in untrained subjects
,”
NeuroImage
37
,
539
(
2007
).
75.
K. R.
Müler
,
M.
Tangermann
,
G.
Dornhege
,
M.
Krauledat
,
G.
Curio
, and
B.
Blankertz
, “
Machine learning for real-time single-trial EEG-analysis: From brain-computer interfacing to mental state monitoring
,”
J. Neurosci. Methods
167
,
82
90
(
2008
).
You do not currently have access to this content.