We propose a new model-free method based on the feed-forward artificial neuronal network for detecting functional connectivity in coupled systems. The developed method which does not require large computational costs and which is able to work with short data trials can be used for analysis and reconstruction of connectivity in experimental multichannel data of different nature. We test this approach on the chaotic Rössler system and demonstrate good agreement with the previous well-known results. Then, we use our method to predict functional connectivity thalamo-cortical network of epileptic brain based on ECoG data set of WAG/Rij rats with genetic predisposition to absence epilepsy. We show the emergence of functional interdependence between cortical layers and thalamic nuclei after epileptic discharge onset.

1.
D. S.
Bassett
and
O.
Sporns
, “
Network neuroscience
,”
Nat. Neurosci.
20
,
353
364
(
2017
).
2.
S. F.
Muldoon
,
E. W.
Bridgeford
, and
D. S.
Bassett
, “
Small-world propensity and weighted brain networks
,”
Sci. Rep.
6
,
22057
(
2016
).
3.
A.
Zhigalov
,
G.
Arnulfo
,
L.
Nobili
,
S.
Palva
, and
J. M.
Palva
, “
Modular co-organization of functional connectivity and scale-free dynamics in the human brain
,”
Netw. Neurosci.
1
,
143
165
(
2017
).
4.
A.
Schnitzler
and
J.
Gross
, “
Normal and pathological oscillatory communication in the brain
,”
Nat. Rev. Neurosci.
6
,
285
(
2005
).
5.
P.
Fries
, “
Rhythms for cognition: Communication through coherence
,”
Neuron
88
,
220
235
(
2015
).
6.
V. A.
Maksimenko
,
A.
Lüttjohann
,
V. V.
Makarov
,
M. V.
Goremyko
,
A. A.
Koronovskii
,
V.
Nedaivozov
,
A. E.
Runnova
,
G.
Luijtelaar van
,
A. E.
Hramov
, and
S.
Boccaletti
, “
Macroscopic and microscopic spectral properties of brain networks during local and global synchronization
,”
Phys. Rev. E
96
,
12316
(
2017
).
7.
V. A.
Maksimenko
,
A. E.
Runnova
,
N. S.
Frolov
,
V. V.
Makarov
,
V. O.
Nedaivozov
,
A. A.
Koronovskii
,
A. N.
Pisarchik
, and
A. E.
Hramov
, “
Multiscale neural connectivity during human sensory processing in the brain
,”
Phys. Rev. E
97
,
052405
(
2018
).
8.
V. V.
Makarov
,
M. O.
Zhuravlev
,
A. E.
Runnova
,
P.
Protasov
,
V. A.
Maksimenko
,
N. S.
Frolov
,
A. N.
Pisarchik
, and
A. E.
Hramov
, “
Betweenness centrality in multiplex brain network during mental task evaluation
,”
Phys. Rev. E
98
,
62413
(
2018
).
9.
A.
Lüttjohann
and
G.
van Luijtelaar
, “
Dynamics of networks during absence seizure’s on-and offset in rodents and man
,”
Front. Physiol.
6
,
16
(
2015
).
10.
C. J.
Stam
, “
Modern network science of neurological disorders
,”
Nat. Rev. Neurosci.
15
,
683
(
2014
).
11.
A. M.
Bastos
and
J.-M.
Schoffelen
, “
A tutorial review of functional connectivity analysis methods and their interpretational pitfalls
,”
Front. Syst. Neurosci.
9
,
175
(
2016
).
12.
N. F.
Rulkov
,
M. M.
Sushchik
,
L. S.
Tsimring
, and
H. D.
Abarbanel
, “
Generalized synchronization of chaos in directionally coupled chaotic systems
,”
Phys. Rev. E
51
,
980
(
1995
).
13.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
2003
), Vol. 12.
14.
O. I.
Moskalenko
,
A. A.
Koronovskii
,
A. E.
Hramov
, and
S.
Boccaletti
, “
Generalized synchronization in mutually coupled oscillators and complex networks
,”
Phys. Rev. E
86
,
036216
(
2012
).
15.
L. M.
Pecora
and
T. L.
Carroll
, “
Synchronization of chaotic systems
,”
Chaos
25
,
097611
(
2015
).
16.
A. N.
Pisarchik
and
F. R.
Ruiz-Oliveras
, “
Optical chaotic communication using generalized and complete synchronization
,”
IEEE J. Quantum Electron.
46
,
279
284
(
2010
).
17.
A. A.
Koronovskii
,
O. I.
Moskalenko
, and
A. E.
Hramov
, “
On the use of chaotic synchronization for secure communication
,”
Phys.-Usp.
52
,
1213
(
2009
).
18.
M.
Prokhorov
,
V.
Ponomarenko
,
D.
Kulminskiy
,
A.
Koronovskii
,
O.
Moskalenko
, and
A.
Hramov
, “
Resistant to noise chaotic communication scheme exploiting the regime of generalized synchronization
,”
Nonlinear Dyn.
87
,
2039
2050
(
2017
).
19.
M. X.
Cohen
,
Analyzing Neural Time Series Data: Theory and Practice
(
MIT Press
,
2014
).
20.
A. E.
Hramov
,
V. A.
Maksimenko
,
S. V.
Pchelintseva
,
A. E.
Runnova
,
V. V.
Grubov
,
V. Y.
Musatov
,
M. O.
Zhuravlev
,
A. A.
Koronovskii
, and
A. N.
Pisarchik
, “
Classifying the perceptual interpretations of a bistable image using EEG and artificial neural networks
,”
Front. Neurosci.
11
,
674
(
2017
).
21.
H. D.
Abarbanel
,
N. F.
Rulkov
, and
M. M.
Sushchik
, “
Generalized synchronization of chaos: The auxiliary system approach
,”
Phys. Rev. E
53
,
4528
(
1996
).
22.
K.
Pyragas
, “
Weak and strong synchronization of chaos
,”
Phys. Rev. E
54
,
R4508
(
1996
).
23.
A. A.
Koronovskii
,
O. I.
Moskalenko
, and
A. E.
Hramov
, “
Nearest neighbors, phase tubes, and generalized synchronization
,”
Phys. Rev. E
84
,
037201
(
2011
).
24.
B.
Lusch
,
J. N.
Kutz
, and
S. L.
Brunton
, “
Deep learning for universal linear embeddings of nonlinear dynamics
,”
Nat. Commun.
9
,
4950
(
2018
).
25.
T.
Weng
,
H.
Yang
,
C.
Gu
,
J.
Zhang
, and
M.
Small
, “
Synchronization of chaotic systems and their machine-learning models
,”
Phys. Rev. E
99
,
042203
(
2019
).
26.
J.
Pathak
,
B.
Hunt
,
M.
Girvan
,
Z.
Lu
, and
E.
Ott
, “
Model-free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach
,”
Phys. Rev. Lett.
120
,
024102
(
2018
).
27.
J.
Pathak
,
Z.
Lu
,
B. R.
Hunt
,
M.
Girvan
, and
E.
Ott
, “
Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data
,”
Chaos
27
,
121102
(
2017
).
28.
Z.
Lu
,
B. R.
Hunt
, and
E.
Ott
, “
Attractor reconstruction by machine learning
,”
Chaos
28
,
061104
(
2018
).
29.
A. E.
Hramov
,
N. S.
Frolov
,
V. A.
Maksimenko
,
V. V.
Makarov
,
A. A.
Koronovskii
,
J.
Garcia-Prieto
,
L. F.
Antón-Toro
,
F.
Maestú
, and
A. N.
Pisarchik
, “
Artificial neural network detects human uncertainty
,”
Chaos
28
,
033607
(
2018
).
30.
D.
Ibáñez-Soria
,
J.
Garcia-Ojalvo
,
A.
Soria-Frisch
, and
G.
Ruffini
, “
Detection of generalized synchronization using echo state networks
,”
Chaos
28
,
033118
(
2018
).
31.
K.
Hornik
,
M.
Stinchcombe
, and
H.
White
, “
Multilayer feedforward networks are universal approximators
,”
Neural Netw.
2
,
359
366
(
1989
).
32.
G.
Cybenko
, “
Approximation by superpositions of a sigmoidal function
,”
Math. Control Signals Syst.
2
,
303
314
(
1989
).
33.
I.
Goodfellow
,
Y.
Bengio
, and
A.
Courville
, “
Deep feedforward networks
,” in
Deep Learning
(
MIT Press
,
2016
), pp.
168
227
.
34.
F.
Chollet
et al., See https://keras.io for “Keras” (2015).
35.
A. E.
Hramov
and
A. A.
Koronovskii
, “
Generalized synchronization: A modified system approach
,”
Phys. Rev. E
71
,
067201
(
2005
).
36.
E.
Sitnikova
, “
Thalamo-cortical mechanisms of sleep spindles and spike–wave discharges in rat model of absence epilepsy (a review)
,”
Epilepsy Res.
89
,
17
26
(
2010
).
37.
A.
Coenen
and
E.
Van Luijtelaar
, “
Genetic animal models for absence epilepsy: A review of the WAG/Rij strain of rats
,”
Behav. Genet.
33
,
635
655
(
2003
).
38.
M. S.
Roulston
, “
Estimating the errors on measured entropy and mutual information
,”
Physica D
125
,
285
294
(
1999
).
39.
M. B.
Kennel
,
R.
Brown
, and
H. D.
Abarbanel
, “
Determining embedding dimension for phase-space reconstruction using a geometrical construction
,”
Phys. Rev. A
45
,
3403
(
1992
).
You do not currently have access to this content.