We review generalized fluctuation-dissipation relations, which are valid under general conditions even in “nonstandard systems,” e.g., out of equilibrium and/or without a Hamiltonian structure. The response functions can be expressed in terms of suitable correlation functions computed in the unperturbed dynamics. In these relations, typically, one has nontrivial contributions due to the form of the stationary probability distribution; such terms take into account the interaction among the relevant degrees of freedom in the system. We illustrate the general formalism with some examples in nonstandard cases, including driven granular media, systems with a multiscale structure, active matter, and systems showing anomalous diffusion.
REFERENCES
1.
A.
Einstein
, “On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heat
,” Ann. Phys.
17
, 549
(1905
). 2.
L.
Onsager
, “Reciprocal relations in irreversible processes. I
,” Phys. Rev.
37
, 405
–426
(1931
). 3.
L.
Onsager
, “Reciprocal relations in irreversible processes. II
,” Phys. Rev.
38
, 2265
–2279
(1931
). 4.
R. H.
Kraichnan
, “Deviations from fluctuation-relaxation relations
,” Physica A
279
, 30
(2000
). 5.
R. H.
Kraichnan
, “Classical fluctuation-relaxation theorem
,” Phys. Rev.
113
, 118
(1959
). 6.
C. E.
Leith
, “Climate response and fluctuation dissipation
,” J. Atmos. Sci.
32
, 2022
(1975
). 7.
R. E.
Bell
, “Climate sensitivity from fluctuation dissipation: Some simple model tests
,” J. Atmos. Sci.
37
, 1700
(1980
). 8.
G. R.
North
, R. E.
Bell
, and J. W.
Hardin
, “Fluctuation dissipation in a general circulation model
,” Clim. Dyn.
8
, 259
(1993
). 9.
A. J.
Majda
and X.
Wang
, Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows
(Cambridge University Press
, 2006
).10.
R.
Abramov
and A. J.
Majda
, “New approximations and tests of linear fluctuation-response for chaotic nonlinear forced-dissipative dynamical systems
,” J. Nonlinear Sci.
18
, 303
(2008
). 11.
R. V.
Abramov
, “A theory of average response to large jump perturbations” (unpublished); e-print arXiv:1903.07226.12.
U.
Seifert
, “Stochastic thermodynamics, fluctuation theorems and molecular machines
,” Rep. Prog. Phys.
75
, 126001
(2012
). 13.
G.
Gradenigo
, A.
Puglisi
, A.
Sarracino
, D.
Villamaina
, and A.
Vulpiani
, “Out-of-equilibrium generalized fluctuation-dissipation relations,” in Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond, edited by C. Jarzynski, R. Klages, and W. Just (Wiley-VCH, Weinheim, 2013).14.
A.
Crisanti
and F.
Ritort
, “Violation of the fluctuation-dissipation theorem in glassy systems: Basic notions and the numerical evidence
,” J. Phys. A
36
, R181
(2003
). 15.
U.
Marini Bettolo Marconi
, A.
Puglisi
, L.
Rondoni
, and A.
Vulpiani
, “Fluctuation-dissipation: Response theory in statistical physics
,” Phys. Rep.
461
, 111
(2008
). 16.
L. F.
Cugliandolo
, “The effective temperature
,” J. Phys. A Math. Theor.
44
, 483001
(2011
). 17.
M.
Baiesi
and C.
Maes
, “An update on the nonequilibrium linear response
,” New J. Phys.
15
, 013004
(2013
). 18.
A.
Puglisi
, A.
Sarracino
, and A.
Vulpiani
, “Temperature in and out of equilibrium: A review of concepts, tools and attempts
,” Phys. Rep.
709–710
, 1
(2017
). 19.
V.
Baladi
and D.
Smania
, “Linear response formula for piecewise expanding unimodal maps
,” Nonlinearity
21
, 677
(2008
). 20.
R. H.
Rose
and P. L.
Sulem
, “Fully developed turbulence and statistical mechanics
,” J. Phys.
39
, 441
(1978
). 21.
U.
Deker
and F.
Haake
, “Fluctuation-dissipation theorems for classical processes
,” Phys. Rev. A
11
, 2043
(1975
). 22.
M.
Falcioni
, S.
Isola
, and A.
Vulpiani
, “Correlation functions and relaxation properties in chaotic dynamics and statistical mechanics
,” Phys. Lett. A
144
, 341
(1990
). 23.
G.
Boffetta
, G.
Lacorata
, S.
Musacchio
, and A.
Vulpiani
, “Relaxation of finite perturbations: Beyond the fluctuation-response relation
,” Chaos
13
, 806
(2003
). 24.
N. G.
van Kampen
, “The case against linear response theory
,” Phys. Norv.
5
, 279
(1971
).25.
R.
Kubo
, “Brownian motion and nonequilibrium statistical mechanics
,” Science
233
, 330
(1986
). 26.
A.
Puglisi
, Transport and Fluctuations in Granular Fluids: From Boltzmann Equation to Hydrodynamics, Diffusion and Motor Effects
(Springer
, 2015
).27.
M. C.
Marchetti
, J. F.
Joanny
, S.
Ramaswamy
, T. B.
Liverpool
, J.
Prost
, M.
Rao
, and R
Aditi Simha
, “Hydrodynamics of soft active matter
,” Rev. Mod. Phys.
85
, 1143
–1189
(2013
). 28.
R.
Kubo
, “The fluctuation-dissipation theorem
,” Rep. Prog. Phys.
29
, 255
(1966
). 29.
G.
Joyce
and D.
Montgomery
, “Negative temperature states for the two-dimensional guiding-centre plasma
,” J. Plasma Phys.
10
, 107
(1973
). 30.
S.
Braun
, J. P.
Ronzheimer
, M.
Schreiber
, S. S.
Hodgman
, T.
Rom
, I.
Bloch
, and U.
Schneider
, “Negative absolute temperature for motional degrees of freedom
,” Science
339
, 52
(2013
). 31.
F.
Miceli
, M.
Baldovin
, and A.
Vulpiani
, “Statistical mechanics of systems with long-range interactions and negative absolute temperature
,” Phys. Rev. E
99
, 042152
(2019
). 32.
D.
Ruelle
, “General linear response formula in statistical mechanics, and the fluctuation-dissipation theorem far from equilibrium
,” Phys. Lett. A
245
, 220
(1998
). 33.
B.
Cessac
and J. A.
Sepulchre
, “Linear response, susceptibility and resonance in chaotic toy models
,” Physica D
225
, 13
(2007
). 34.
M.
Colangeli
, L.
Rondoni
, and A.
Vulpiani
, “Fluctuation-dissipation relation for chaotic non-Hamiltonian systems
,” J. Stat. Mech.
2012
, L04002
. 35.
C.
Maes
, “The fluctuation theorem as a Gibbs property
,” J. Stat. Phys.
95
, 367
(1999
). 36.
E.
Lippiello
, F.
Corberi
, and M.
Zannetti
, “Off-equilibrium generalization of the fluctuation dissipation theorem for Ising spins and measurement of the linear response function
,” Phys. Rev. E
71
, 036104
(2005
). 37.
F.
Corberi
, E.
Lippiello
, A.
Sarracino
, and M.
Zannetti
, “Fluctuation-dissipation relations and field-free algorithms for the computation of response functions
,” Phys. Rev. E
81
, 011124
(2010
). 38.
U.
Basu
and C.
Maes
, “Nonequilibrium response and frenesy
,” J. Phys. Conf. Ser.
638
, 012001
(2015
). 39.
O.
Bénichou
, P.
Illien
, G.
Oshanin
, A.
Sarracino
, and R.
Voituriez
, “Nonlinear response and emerging nonequilibrium microstructures for biased diffusion in confined crowded environments
,” Phys. Rev. E
93
, 032128
(2016
). 40.
G.
Teza
, S.
Iubini
, M.
Baiesi
, A. L.
Stella
, and C.
Vanderzande
, “Rate dependence of current and fluctuations in jump models with negative differential mobility” (unpublished); e-print arXiv:1904.05241.41.
M.
Baiesi
, C.
Maes
, and B.
Wynants
, “Fluctuations and response of nonequilibrium states
,” Phys. Rev. Lett.
103
, 010602
(2009
). 42.
M.
Baiesi
, C.
Maes
, and B.
Wynants
, “Nonequilibrium linear response for Markov dynamics, I: Jump processes and overdamped diffusions
,” J. Stat. Phys.
137
, 1094
(2009
). 43.
M.
Baiesi
, E.
Boksenbojm
, C.
Maes
, and B.
Wynants
, “Nonequilibrium linear response for Markov dynamics, II: Inertial dynamics
,” J. Stat. Phys.
139
, 492
(2010
). 44.
T.
Speck
and U.
Seifert
, “Restoring a fluctuation-dissipation theorem in a nonequilibrium steady state
,” Europhys. Lett.
74
, 391
(2006
). 45.
G.
Verley
, K.
Mallick
, and D.
Lacoste
, “Modified fluctuation-dissipation theorem for non-equilibrium steady states and applications to molecular motors
,” Europhys. Lett.
93
, 10002
(2011
). 46.
J.
Prost
, J.-F.
Joanny
, and J. M. R.
Parrondo
, “Generalized fluctuation-dissipation theorem for steady-state systems
,” Phys. Rev. Lett.
103
, 090601
(2009
). 47.
J. R.
Gomez-Solano
, A.
Petrosyan
, S.
Ciliberto
, R.
Chetrite
, and K.
Gawedzki
, “Experimental verification of a modified fluctuation-dissipation relation for a micron-sized particle in a non-equilibrium steady state
,” Phys. Rev. Lett.
103
, 040601
(2009
). 48.
J. R.
Gomez-Solano
, A.
Petrosyan
, S.
Ciliberto
, and C.
Maes
, “Fluctuations and response in a non-equilibrium micron-sized system
,” J. Stat. Mech.
2011
, P01008
. 49.
L. F.
Cugliandolo
, J.
Kurchan
, and G.
Parisi
, “Off equilibrium dynamics and aging in unfrustrated systems
,” J. Phys. I France
4
, 1641
(1994
). DOI: 50.
C.
Landim
, S.
Olla
, and S. R. S.
Varadhan
, “On viscosity and fluctuation-dissipation in exclusion processes
,” J. Stat. Phys.
115
, 323
(2004
). 51.
G.
Falasco
and M.
Baiesi
, “Nonequilibrium temperature response for stochastic overdamped systems
,” New J. Phys.
18
, 043039
(2016
). 52.
G.
Falasco
and M.
Baiesi
, “Temperature response in nonequilibrium stochastic systems
,” Europhys. Lett.
113
, 20005
(2016
). 53.
J.-P.
Bouchaud
and G.
Biroli
, “Nonlinear susceptibility in glassy systems: A probe for cooperative dynamical length scales
,” Phys. Rev. B
72
, 064204
(2005
). 54.
E.
Lippiello
, F.
Corberi
, A.
Sarracino
, and M.
Zannetti
, “Nonlinear susceptibilities and the measurement of a cooperative length
,” Phys. Rev. B
77
, 212201
(2008
). 55.
E.
Lippiello
, F.
Corberi
, A.
Sarracino
, and M.
Zannetti
, “Nonlinear response and fluctuation-dissipation relations
,” Phys. Rev. E
78
, 041120
(2008
). 56.
C.
Crauste-Thibierge
, C.
Brun
, F.
Ladieu
, D.
L’hôte
, G.
Biroli
, and J-P
Bouchaud
, “Evidence of growing spatial correlations at the glass transition from nonlinear response experiments
,” Phys. Rev. Lett.
104
, 165703
(2010
). 57.
U.
Basu
, M.
Krüger
, A.
Lazarescu
, and C.
Maes
, “Frenetic aspects of second order response
,” Phys. Chem. Chem. Phys.
17
, 6653
(2015
). 58.
U.
Seifert
, “Entropy production along a stochastic trajectory and an integral fluctuation theorem
,” Phys. Rev. Lett.
95
, 040602
(2005
). 59.
C.
Maes
, Non-Dissipative Effects in Nonequilibrium Systems
(Springer
, 2018
).60.
A.
Sarracino
, D.
Villamaina
, G.
Gradenigo
, and A.
Puglisi
, “Irreversible dynamics of a massive intruder in dense granular fluids
,” Europhys. Lett.
92
, 34001
(2010
). 61.
A.
Sarracino
, D.
Villamaina
, G.
Costantini
, and A.
Puglisi
, “Granular Brownian motion
,” J. Stat. Mech.
2010
, P04013
. 62.
A.
Gnoli
, A.
Puglisi
, A.
Sarracino
, and A.
Vulpiani
, “Nonequilibrium Brownian motion beyond the effective temperature
,” PLoS One
9
, e93720
(2014
). 63.
A.
Crisanti
, A.
Puglisi
, and D.
Villamaina
, “Non-equilibrium and information: The role of cross-correlations
,” Phys. Rev. E
85
, 061127
(2012
). 64.
L. F.
Cugliandolo
, J.
Kurchan
, and L.
Peliti
, “Energy flow, partial equilibration, and effective temperatures in systems with slow dynamics
,” Phys. Rev. E
55
, 3898
(1997
). 65.
D.
Villamaina
, A.
Baldassarri
, A.
Puglisi
, and A.
Vulpiani
, “Fluctuation dissipation relation: How does one compare correlation functions and responses?
,” J. Stat. Mech.
2009
, P07024
. 66.
G.
D’Anna
, P.
Mayor
, G.
Gremaud
, A.
Barrat
, V.
Loreto
, and F.
Nori
, “Observing Brownian motion in vibration-fluidized granular matter
,” Nature
424
, 909
(2003
). 67.
A.
Baldassarri
, A.
Barrat
, G.
D’Anna
, V.
Loreto
, P.
Mayor
, and A.
Puglisi
, “What is the temperature of a granular medium?
,” J. Phys. Condens. Matter
17
, S2405
(2005
). 68.
A. S.
Keys
, A. R.
Abate
, S. C.
Glotzer
, and D. J.
Durian
, “Measurement of growing dynamical length scales and prediction of the jamming transition in a granular material
,” Nat. Phys.
3
, 260
(2007
). 69.
D.
Loi
, S.
Mossa
, and L. F.
Cugliandolo
, “Effective temperature of active matter
,” Phys. Rev. E
77
, 051111
(2008
). 70.
S.
Wang
and P. G.
Wolynes
, “On the spontaneous collective motion of active matter
,” Proc. Natl. Acad. Sci. U.S.A.
108
, 15184
–15189
(2011
). 71.
G.
Szamel
, “Self-propelled particle in an external potential: Existence of an effective temperature
,” Phys. Rev. E
90
, 012111
(2014
). 72.
D.
Levis
and L.
Berthier
, “From single-particle to collective effective temperatures in an active fluid of self-propelled particles
,” Europhys. Lett.
111
, 60006
(2015
). 73.
M.
Han
, J.
Yan
, S.
Granick
, and E.
Luijten
, “Effective temperature concept evaluated in an active colloid mixture
,” Proc. Natl. Acad. Sci. U.S.A.
114
, 7513
–7518
(2017
). 74.
C. M.
Rohwer
, A.
Solon
, M.
Kardar
, and M
Krüger
, “Nonequilibrium forces following quenches in active and thermal matter
,” Phys. Rev. E
97
, 032125
(2018
). 75.
E.
Dieterich
, J.
Camunas-Soler
, M.
Ribezzi-Crivellari
, U.
Seifert
, and F.
Ritort
, “Single-molecule measurement of the effective temperature in non-equilibrium steady states
,” Nat. Phys.
11
, 971
(2015
). 76.
Z.
Preisler
and M.
Dijkstra
, “Configurational entropy and effective temperature in systems of active Brownian particles
,” Soft Matter
12
, 6043
–6048
(2016
). 77.
C. M.
Rohwer
, M.
Kardar
, and M
Krüger
, “Transient Casimir forces from quenches in thermal and active matter
,” Phys. Rev. Lett.
118
, 015702
(2017
). 78.
M.
Workamp
, G.
Ramirez
, K. E.
Daniels
, and J. A.
Dijksman
, “Symmetry-reversals in chiral active matter
,” Soft Matter
14
, 5572
–5580
(2018
). 79.
U.
Seifert
, “From stochastic thermodynamics to thermodynamic inference
,” Annu. Rev. Condens. Matter Phys.
10
, 171
–192
(2019
). 80.
L. F.
Cugliandolo
, G.
Gonnella
, and I.
Petrelli
, “Effective temperature in active Brownian particles
,” Fluctuation Noise Lett.
18
, 1940008
(2019
). 81.
R.
Golestanian
, “Bose–Einstein condensation in scalar active matter with diffusivity edge,” Phys. Rev. E
100
, 010601
(2019
). 82.
N.
Klongvessa
, F.
Ginot
, C.
Ybert
, C.
Cottin-Bizonne
, and M.
Leocmach
, “Active glass: Ergodicity breaking dramatically affects response to self-propulsion” (unpublished); e-print arXiv:1902.01746.83.
I. K.
Ono
, C. S.
O’Hern
, D. J.
Durian
, S. A.
Langer
, A. J.
Liu
, and S. R.
Nagel
, “Effective temperatures of a driven system near jamming
,” Phys. Rev. Lett.
89
, 095703
(2002
). 84.
R. P.
Ojha
, P. A.
Lemieux
, P. K.
Dixon
, A. J.
Liu
, and D. J.
Durian
, “Statistical mechanics of a gas-fluidized particle
,” Nature
427
, 521
(2004
). 85.
A. R.
Abate
and D. J.
Durian
, “Effective temperatures and activated dynamics for a two-dimensional air-driven granular system on two approaches to jamming
,” Phys. Rev. Lett.
101
, 245701
(2008
). 86.
J. P.
Bouchaud
and A.
Georges
, “Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications
,” Phys. Rep.
195
, 127
(1990
). 87.
Q.
Gu
, E. A.
Schiff
, S.
Grebner
, F.
Wang
, and R.
Schwarz
, “Non-Gaussian transport measurements and the Einstein relation in amorphous silicon
,” Phys. Rev. Lett.
76
, 3196
(1996
). 88.
P.
Castiglione
, A.
Mazzino
, P.
Muratore-Ginanneschi
, and A.
Vulpiani
, “On strong anomalous diffusion
,” Physica D
134
, 75
(1999
). 89.
R.
Metzler
and J.
Klafter
, “The random walk’s guide to anomalous diffusion: A fractional dynamics approach
,” Phys. Rep.
339
, 1
(2000
). 90.
R.
Burioni
and D.
Cassi
, “Random walks on graphs: Ideas, techniques and results
,” J. Phys. A Math. Gen.
38
, R45
(2005
). 91.
O.
Bénichou
and G.
Oshanin
, “Ultraslow vacancy-mediated tracer diffusion in two dimensions: The Einstein relation verified
,” Phys. Rev. E
66
, 031101
(2002
). 92.
R.
Metzler
, E.
Barkai
, and J.
Klafter
, “Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach
,” Phys. Rev. Lett
82
, 3563
(1999
). 93.
E.
Barkai
and V. N.
Fleurov
, “Generalized Einstein relation: A stochastic modeling approach
,” Phys. Rev. E
58
, 1296
(1998
). 94.
A. V.
Chechkin
and R.
Klages
, “Fluctuation relations for anomalous dynamics
,” J. Stat. Mech.
2009
, L03002
. 95.
L.
Lizana
, T.
Ambjörnsson
, A.
Taloni
, E.
Barkai
, and M. A.
Lomholt
, “Foundation of fractional Langevin equation: Harmonization of a many-body problem
,” Phys. Rev. E
81
, 51118
(2010
). 96.
D.
Villamaina
, A.
Puglisi
, and A.
Vulpiani
, “The fluctuation-dissipation relation in sub-diffusive systems: The case of granular single-file diffusion
,” J. Stat. Mech.
2008
, L10001
. 97.
K.
Hahn
, J.
Kärger
, and V.
Kukla
, “Single-file diffusion observation
,” Phys. Rev. Lett.
76
, 2762
(1996
). 98.
D.
Villamaina
, A.
Sarracino
, G.
Gradenigo
, A.
Puglisi
, and A.
Vulpiani
, “On anomalous diffusion and the out of equilibrium response function in one-dimensional models
,” J. Stat. Mech.
2011
, L01002
. 99.
G.
Forte
, R.
Burioni
, F.
Cecconi
, and A.
Vulpiani
, “Anomalous diffusion and response in branched systems: A simple analysis
,” J. Phys. Condens. Matter
25
, 465106
(2013
). 100.
G.
Gradenigo
, A.
Sarracino
, D.
Villamaina
, and A.
Vulpiani
, “Einstein relation in superdiffusive systems
,” J. Stat. Mech. Theory Exp.
2012
, L06001
. 101.
D.
Froemberg
and E.
Barkai
, “Time-averaged Einstein relation and fluctuating diffusivities for the Lévy walk
,” Phys. Rev. E
87
, 030104
(2013
). 102.
A.
Godec
and R.
Metzler
, “Linear response, fluctuation-dissipation, and finite-system-size effects in superdiffusion
,” Phys. Rev. E
88
, 012116
(2013
). 103.
L.
Kuśmierz
, B.
Dybiec
, and E
Gudowska-Nowak
, “Thermodynamics of superdiffusion generated by Lévy–Wiener fluctuating forces
,” Entropy
20
, 658
(2018
). 104.
I. V. L.
Costa
, R.
Morgado
, M. V. B.
T. Lima
, and F. A.
Oliveira
, “The fluctuation-dissipation theorem fails for fast superdiffusion
,” Europhys. Lett.
63
, 173
(2003
). 105.
P.
Dieterich
, R.
Klages
, and A. V.
Chechkin
, “Fluctuation relations for anomalous dynamics generated by time-fractional Fokker–Planck equations
,” New J. Phys.
17
, 075004
(2015
). 106.
N.
Pottier
and A.
Mauger
, “Anomalous diffusion of a particle in an aging medium
,” Physica A
332
, 15
(2004
). 107.
N.
Pottier
, “Aging properties of an anomalously diffusing particle
,” Physica A
317
, 371
(2003
). 108.
O.
Bénichou
, P.
Illien
, G.
Oshanin
, A.
Sarracino
, and R.
Voituriez
, “Diffusion and subdiffusion of interacting particles on comblike structures
,” Phys. Rev. Lett.
115
, 220601
(2015
). 109.
A.
Sarracino
, F.
Cecconi
, A.
Puglisi
, and A.
Vulpiani
, “Nonlinear response of inertial tracers in steady laminar flows: Differential and absolute negative mobility
,” Phys. Rev. Lett.
117
, 174501
(2016
). 110.
G.
Lacorata
and A.
Vulpiani
, “Fluctuation-response relation and modeling in systems with fast and slow dynamics
,” Nonlinear Proc. Geophys.
14
, 681
(2007
). 111.
C. L.
Wormell
and G. A.
Gottwald
, “On the validity of linear response theory in high-dimensional deterministic dynamical systems
,” J. Stat. Phys.
172
, 1479
(2018
). 112.
G.
De Magistris
and D.
Marenduzzo
, “An introduction to the physics of active matter
,” Physica A
418
, 65
–77
(2015
), Proceedings of the 13th International Summer School on Fundamental Problems in Statistical Physics.113.
E.
Fodor
, C.
Nardini
, M. E.
Cates
, J.
Tailleur
, P.
Visco
, and F
van Wijland
, “How far from equilibrium is active matter?
,” Phys. Rev. Lett.
117
, 038103
(2016
). 114.
D.
Mandal
, K.
Klymko
, and M. R.
DeWeese
, “Entropy production and fluctuation theorems for active matter
,” Phys. Rev. Lett.
119
, 258001
(2017
). 115.
S.
Shankar
and M. C.
Marchetti
, “Hidden entropy production and work fluctuations in an ideal active gas
,” Phys. Rev. E
98
, 020604
(2018
). 116.
A.
Puglisi
and U.
Marini Bettolo Marconi
, “Clausius relation for active particles: What can we learn from fluctuations
,” Entropy
19
, 356
(2017
). 117.
A.
Suma
, G.
Gonnella
, G.
Laghezza
, A.
Lamura
, A.
Mossa
, and L. F.
Cugliandolo
, “Dynamics of a homogeneous active dumbbell system
,” Phys. Rev. E
90
, 052130
(2014
). 118.
C.
Maggi
, M.
Paoluzzi
, L.
Angelani
, and R
Di Leonardo
, “Memory-less response and violation of the fluctuation-dissipation theorem in colloids suspended in an active bath
,” Sci. Rep.
7
, 17588
(2017
). 119.
G.
Szamel
, “Evaluating linear response in active systems with no perturbing field
,” Europhys. Lett.
117
, 50010
(2017
). 120.
C.
Shen
and H. D.
Ou-Yang
, “Fluctuation-dissipation of an active Brownian particle under confinement
,” SPIE
10723
, 107230A
(2018
). 121.
E. W.
Burkholder
and J. F.
Brady
, “Fluctuation-dissipation in active matter
,” J. Chem. Phys.
150
, 184901
(2019
). 122.
S.
Dal Cengio
, D.
Levis
, and I.
Pagonabarraga
, “Linear response theory and Green-Kubo relations for active matter” (unpublished); e-print arXiv:1907.02560.123.
C.
Maggi
, U.
Marini Bettolo Marconi
, N.
Gnan
, and R
Di Leonardo
, “Multidimensional stationary probability distribution for interacting active particles
,” Sci. Rep.
5
, 10742
(2015
). 124.
L.
Caprini
, U.
Marini Bettolo Marconi
, and A.
Vulpiani
, “Linear response and correlation of a self-propelled particle in the presence of external fields
,” J. Stat. Mech. Theory Exp.
2018
, 033203
. 125.
C.
Maes
, S.
Safaverdi
, P.
Visco
, and F
van Wijland
, “Fluctuation-response relations for nonequilibrium diffusions with memory
,” Phys. Rev. E
87
, 022125
(2013
). 126.
F.
Schweitzer
, W.
Ebeling
, and B.
Tilch
, “Complex motion of Brownian particles with energy depots
,” Phys. Rev. Lett.
80
, 5044
–5047
(1998
). 127.
128.
A.
Sarracino
, “Time asymmetry of the Kramers equation with nonlinear friction: Fluctuation-dissipation relation and ratchet effect
,” Phys. Rev. E
88
, 052124
(2013
). © 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.