A key feature of the classical Fluctuation Dissipation theorem is its ability to approximate the average response of a dynamical system to a sufficiently small external perturbation from an appropriate time correlation function of the unperturbed dynamics of this system. In the present work, we examine the situation where the state of a nonlinear dynamical system is perturbed by a finitely large, instantaneous external perturbation (jump), for example, the Earth climate perturbed by an extinction level event. Such jump can be either deterministic or stochastic, and in the case of a stochastic jump its randomness can be spatial, or temporal, or both. We show that, even for large instantaneous jumps, the average response of the system can be expressed in the form of a suitable time correlation function of the corresponding unperturbed dynamics. For stochastic jumps, we consider two situations: one where a single spatially random jump of a system state occurs at a predetermined time, and the other where jumps occur randomly in time with small space-time dependent statistical intensity. For all studied configurations, we compute the corresponding average response formulas in the form of suitable time correlation functions of the unperturbed dynamics. Some efficiently computable approximations are derived for practical modeling scenarios.

1.
R.
Kubo
, “
Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems
,”
J. Phys. Soc. Jpn.
12
,
507
586
(
1957
).
2.
R.
Kubo
, “
The fluctuation-dissipation theorem
,”
Rep. Prog. Phys.
29
,
255
284
(
1966
).
3.
H.
Risken
,
The Fokker-Planck Equation
, 2nd ed. (
Springer-Verlag
,
New York
,
1989
).
4.
H.
Nyquist
, “
Thermal agitation of electric charge in conductors
,”
Phys. Rev.
32
,
110
113
(
1928
).
5.
H.
Callen
and
R.
Greene
, “
On a theorem of irreversible thermodynamics
,”
Phys. Rev.
86
,
702
710
(
1952
).
6.
D.
Evans
and
G.
Morriss
,
Statistical Mechanics of Nonequilibrium Liquids
(
Academic Press
,
New York
,
1990
).
7.
R.
Kubo
,
M.
Toda
, and
N.
Hashitsume
,
Statistical Physics II: Nonequilibrium Statistical Mechanics
(
Springer-Verlag
,
New York
,
1985
).
8.
Y.
Okabe
, “
A generalized fluctuation-dissipation theorem for the one-dimensional diffusion process
,”
Commun. Math. Phys.
98
,
449
468
(
1985
).
9.
G.
Uhlenbeck
and
L.
Ornstein
, “
On the theory of the Brownian motion
,”
Phys. Rev.
36
,
823
841
(
1930
).
10.
P.
Vasilopoulos
and
C.
van Vliet
, “
Linear response theory revisited. IV. Applications
,”
J. Math. Phys.
25
,
1391
1403
(
1984
).
11.
R.
Kraichnan
, “
Classical fluctuation-relaxation theorem
,”
Phys. Rev.
113
,
1181
1182
(
1959
).
12.
R.
Kraichnan
, “
An almost-Markovian Galilean-invariant turbulence model
,”
J. Fluid Mech.
47
,
513
524
(
1971
).
13.
H.
Callen
and
T.
Welton
, “
Irreversibility and generalized noise
,”
Phys. Rev.
83
,
34
40
(
1951
).
14.
R.
Feynman
and
F.
Vernon
, “
The theory of a general quantum mechanical system interacting with a linear dissipative system
,”
Ann. Phys.
24
,
118
173
(
1963
).
15.
K.
Fujikawa
, “
Fluctuation-dissipation theorem and quantum tunneling with dissipation
,”
Phys. Rev. E
57
,
5023
5029
(
1998
).
16.
J.
Weber
, “
Fluctuation dissipation theorem
,”
Phys. Rev.
101
,
1620
1626
(
1956
).
17.
S.
Saito
and
I.
Ohmine
, “
Off-resonant fifth-order response function for two-dimensional Raman spectroscopy of liquid CS2 and H2O
,”
Phys. Rev. Lett.
88
,
207401–1
207401–4
(
2002
).
18.
S.
Saito
and
I.
Ohmine
, “
Off-resonant two-dimensional fifth-order Raman spectroscopy of liquid CS2: Detection of anharmonic dynamics
,”
J. Chem. Phys.
119
,
9073
9087
(
2003
).
19.
W.
Noid
,
G.
Ezra
, and
R.
Loring
, “
Vibrational echoes: Dephasing, rephasing, and the stability of classical trajectories
,”
J. Phys. Chem. B
108
,
6536
6543
(
2004
).
20.
K.
Hasselmann
, “
Stochastic climate models: Part I. Theory
,”
Tellus
28
,
473
485
(
1976
).
21.
C.
Leith
, “
Climate response and fluctuation-dissipation
,”
J. Atmos. Sci.
32
,
2022
2025
(
1975
).
22.
C.
Leith
, “
Predictability of climate
,”
Nature
276
,
352
355
(
1978
).
23.
T.
Bell
, “
Climate sensitivity from fluctuation dissipation: Some simple model tests
,”
J. Atmos. Sci.
37
,
1700
1708
(
1980
).
24.
F.
Cooper
and
P.
Haynes
, “
Climate sensitivity via a nonparametric fluctuation–dissipation theorem
,”
J. Atmos. Sci.
68
,
937
953
(
2011
).
25.
F.
Cooper
,
J.
Esler
, and
P.
Haynes
, “
Estimation of the local response to a forcing in a high dimensional system using the fluctuation–dissipation theorem
,”
Nonlin. Process. Geophys.
20
,
239
248
(
2013
).
26.
G.
Carnevale
,
M.
Falcioni
,
S.
Isola
,
R.
Purini
, and
A.
Vulpiani
, “
Fluctuation-response in systems with chaotic behavior
,”
Phys. Fluids A
3
,
2247
2254
(
1991
).
27.
B.
Cohen
and
G.
Craig
, “
The response time of a convective cloud ensemble to a change in forcing
,”
Quart. J. Roy. Meteor. Soc.
130
,
933
944
(
2004
).
28.
A.
Gritsun
and
G.
Branstator
, “
Climate response using a three-dimensional operator based on the fluctuation-dissipation theorem
,”
J. Atmos. Sci.
64
,
2558
2575
(
2007
).
29.
A.
Gritsun
, “
Fluctuation-dissipation theorem on attractors of atmospheric models
,”
Russ. J. Numer. Math. Model.
16
,
115
133
(
2014
).
30.
A.
Gritsun
,
G.
Branstator
, and
V.
Dymnikov
, “
Construction of the linear response operator of an atmospheric general circulation model to small external forcing
,”
Russ. J. Numer. Anal. Math. Model.
17
,
399
416
(
2002
).
31.
A.
Gritsun
,
G.
Branstator
, and
A.
Majda
, “
Climate response of linear and quadratic functionals using the fluctuation dissipation theorem
,”
J. Atmos. Sci.
65
,
2824
2841
(
2008
).
32.
A.
Gritsun
and
V.
Dymnikov
, “
Barotropic atmosphere response to small external actions: Theory and numerical experiments
,”
Atmos. Ocean Phys.
35
,
511
525
(
1999
).
33.
L.
Kells
and
S.
Orszag
, “
Randomness of low-order models of two-dimensional inviscid dynamics
,”
Phys. Fluids
21
,
162
168
(
1978
).
34.
A.
Majda
,
R.
Abramov
, and
B.
Gershgorin
, “
High skill in low frequency climate response through fluctuation dissipation theorems despite structural instability
,”
Proc. Natl. Acad. Sci. U.S.A.
107
,
581
586
(
2010
).
35.
A.
Majda
,
R.
Abramov
, and
M.
Grote
, Information Theory and Stochastics for Multiscale Nonlinear Systems, CRM Monograph Series of Centre de Recherches Mathématiques, Université de Montréal Vol. 25 (American Mathematical Society, 2005), ISBN 0-8218-3843-1.
36.
G.
North
,
R.
Bell
, and
J.
Hardin
, “
Fluctuation dissipation in a general circulation model
,”
Clim. Dyn.
8
,
259
264
(
1993
).
37.
T.
Palmer
, “
A nonlinear dynamical perspective on climate prediction
,”
J. Clim.
12
,
575
591
(
1999
).
38.
R.
Abramov
and
A.
Majda
, “
Blended response algorithms for linear fluctuation-dissipation for complex nonlinear dynamical systems
,”
Nonlinearity
20
,
2793
2821
(
2007
).
39.
R.
Abramov
and
A.
Majda
, “
New approximations and tests of linear fluctuation-response for chaotic nonlinear forced-dissipative dynamical systems
,”
J. Nonlin. Sci.
18
,
303
341
(
2008
).
40.
R.
Abramov
and
A.
Majda
, “
New algorithms for low frequency climate response
,”
J. Atmos. Sci.
66
,
286
309
(
2009
).
41.
R.
Abramov
, “
Short-time linear response with reduced-rank tangent map
,”
Chin. Ann. Math.
30B
,
447
462
(
2009
).
42.
R.
Abramov
, “
Approximate linear response for slow variables of deterministic or stochastic dynamics with time scale separation
,”
J. Comput. Phys.
229
,
7739
7746
(
2010
).
43.
R.
Abramov
, “
Improved linear response for stochastically driven systems
,”
Front. Math. China
7
,
199
216
(
2012
).
44.
R.
Abramov
, “
Linear response of the Lyapunov exponent to a small constant perturbation
,”
Commun. Math. Sci.
14
,
1155
1167
(
2016
).
45.
R.
Abramov
, “
Leading order response of statistical averages of a dynamical system to small stochastic perturbations
,”
J. Stat. Phys.
166
,
1483
1508
(
2017
).
46.
R.
Abramov
, “
A simple linear response closure approximation for slow dynamics of a multiscale system with linear coupling
,”
Multiscale Model. Simul.
10
,
28
47
(
2012
).
47.
R.
Abramov
, “
A simple closure approximation for slow dynamics of a multiscale system: Nonlinear and multiplicative coupling
,”
Multiscale Model. Simul.
11
,
134
151
(
2013
).
48.
R.
Abramov
, “
A simple stochastic parameterization for reduced models of multiscale dynamics
,”
Fluids
1
,
2
(
2016
).
49.
R.
Abramov
and
M.
Kjerland
, “
The response of reduced models of multiscale dynamics to small external perturbations
,”
Commun. Math. Sci.
14
,
831
855
(
2016
).
50.
D.
Erwin
, “
The permo-triassic extinction
,”
Nature
367
,
231
235
(
1994
).
51.
A.
Knoll
,
R.
Bambach
,
D.
Canfield
, and
J.
Grotzinger
, “
Comparative Earth history and late Permian mass extinction
,”
Science
273
,
452
457
(
1996
).
52.
P.
Wignall
, “
Large igneous provinces and mass extinctions
,”
Earth Sci. Rev.
53
,
1
33
(
2000
).
53.
A.
Hallem
and
P.
Bignall
, “
Mass extinctions and sea-level changes
,”
Earth Sci. Rev.
48
,
217
250
(
1999
).
54.
J.
Parish
, “
Climate of a supercontinent
,”
J. Geology
101
,
215
233
(
1993
).
55.
P.
Renne
and
A.
Basu
, “
Rapid eruption of the Siberian Traps flood basalts at the Permo-Triassic boundary
,”
Science
253
,
975
979
(
1991
).
56.
G.
Retallack
,
A.
Seyedolali
,
E.
Krull
,
W.
Holser
, and
C.
Ambers
, “
Search for evidence of impact at the Permian-Triassic boundary in Antarctica and Australia
,”
Geology
26
,
979
982
(
1998
).
57.
L.
Becker
,
R.
Poreda
,
A.
Basu
,
K.
Pope
,
T.
Harrison
,
C.
Nicholson
, and
R.
Iasky
, “
Bedout: A possible end-permian impact crater offshore of Northwestern Australia
,”
Science
304
,
1469
1476
(
2004
).
58.
L.
Becker
,
R.
Poreda
, and
T.
Bunch
, “
Fullerenes: An extraterrestrial carbon carrier phase for noble gases
,”
Proc. Natl. Acad. Sci. U.S.A.
97
,
2979
2983
(
2000
).
59.
G.
Boffetta
,
G.
Lacorata
,
S.
Musacchio
, and
A.
Vulpiani
, “
Relaxation of finite perturbations: Beyond the fluctuation–response relation
,”
Chaos
13
,
806
811
(
2003
).
60.
D.
Applebaum
, Lévy Processes and Stochastic Calculus, Cambridge Studies in Advanced Mathematics No. 116, 2nd ed. (Cambridge University Press, 2009).
61.
B.
Øksendal
,
Stochastic Differential Equations: An Introduction with Applications
,
6th ed.
(
Springer
,
2010
), Universitext.
62.
R.
Abramov
and
A.
Majda
, “
Discrete approximations with additional conserved quantities: Deterministic and statistical behavior
,”
Methods Appl. Anal.
10
,
151
190
(
2003
).
63.
R.
Abramov
and
A.
Majda
, “
Statistically relevant conserved quantities for truncated quasi-geostrophic flow
,”
Proc. Natl. Acad. Sci. U.S.A.
100
,
3841
3846
(
2003
).
64.
R.
Abramov
,
G.
Kovačič
, and
A.
Majda
, “
Hamiltonian structure and statistically relevant conserved quantities for the truncated Burgers-Hopf equation
,”
Commun. Pure Appl. Math.
56
,
0001
0046
(
2003
).
65.
W.
Feller
,
An Introduction to Probability Theory and its Applications, Volume 2
,
2nd ed.
(
Wiley
,
New York
,
1971
).
66.
P.
Courrège
, “
Sur la forme intégro-différentielle des opérateurs de Ck dans C satisfaisant au principe du maximum
,”
Séminaire Brelot-Choquet-Deny. Théorie du potentiel
10
,
1
38
(
1965/66
).
67.
I.
Gikhman
and
A.
Skorokhod
,
Introduction to the Theory of Random Processes
(
Courier Dover Publications
,
1969
).
68.
G.
Birkhoff
, “
Proof of the ergodic theorem
,”
Proc. Natl. Acad. Sci. U.S.A.
17
,
656
660
(
1931
).
69.
A.
Kolmogorov
, “
A simplified proof of the Birkhoff–Khinchin ergodic theorem
,”
Uspekhi Mat. Nauk
5
,
52
56
(
1938
).
70.
G.
Pavliotis
, Stochastic Processes and Applications, Texts in Applied Mathematics Vol. 60 (Springer, 2014).
71.
R.
Abramov
, “
The random gas of hard spheres
,”
J
2
,
162
205
(
2019
).
72.
J.
Hirschfelder
,
C.
Curtiss
, and
R.
Bird
,
The Molecular Theory of Gases and Liquids
(
Wiley
,
1964
).
73.
K.
Itô
, “
Stochastic integral
,”
Proc. Imperial Acad. Tokyo
20
,
519
524
(
1944
).
74.
E.
Lorenz
, “Predictability: A problem partly solved,” in Proceedings of the Seminar on Predictability (ECMWF, Shinfield Park, Reading, England, 1996).
75.
E.
Lorenz
and
K.
Emanuel
, “
Optimal sites for supplementary weather observations
,”
J. Atmos. Sci.
55
,
399
414
(
1998
).
76.
R.
Abramov
,
A.
Majda
, and
R.
Kleeman
, “
Information theory and predictability for low frequency variability
,”
J. Atmos. Sci.
62
,
65
87
(
2005
).
77.
C.
Franzke
, “
Dynamics of low-frequency variability: Barotropic mode
,”
J. Atmos. Sci.
59
,
2909
2897
(
2002
).
78.
R.
Abramov
and
A.
Majda
, “
Low frequency climate response of quasigeostrophic wind-driven ocean circulation
,”
J. Phys. Oceanogr.
42
,
243
260
(
2012
).
79.
J.
McCalpin
, “
The statistics and sensitivity of a double-gyre model: The reduced gravity, quasigeostrophic case
,”
J. Phys. Oceanogr.
25
,
806
824
(
1995
).
80.
J.
McCalpin
and
D.
Haidvogel
, “
Phenomenology of the low-frequency variability in a reduced-gravity, quasigeostrophic double-gyre model
,”
J. Phys. Oceanogr.
26
,
739
752
(
1996
).
81.
D.
Daley
and
D.
Vere-Jones
,
An Introduction to the Theory of Point Processes. Volume I: Elementary Theory and Methods
, 2nd ed. (
Springer
,
2003
).
82.
F.
Papangelou
, “
Integrability of expected increments of point processes and a related random change of scale
,”
Trans. Am. Math. Soc.
165
,
483
506
(
1972
).
You do not currently have access to this content.