In this paper, we present a new fractional-order mathematical model for a tumor-immune surveillance mechanism. We analyze the interactions between various tumor cell populations and immune system via a system of fractional differential equations (FDEs). An efficient numerical procedure is suggested to solve these FDEs by considering singular and nonsingular derivative operators. An optimal control strategy for investigating the effect of chemotherapy treatment on the proposed fractional model is also provided. Simulation results show that the new presented model based on the fractional operator with Mittag–Leffler kernel represents various asymptomatic behaviors that tracks the real data more accurately than the other fractional- and integer-order models. Numerical simulations also verify the efficiency of the proposed optimal control strategy and show that the growth of the naive tumor cell population is successfully declined.

1.
P.
Gerlee
and
A. R. A.
Anderson
, “
An evolutionary hybrid cellular automaton model of solid tumour growth
,”
J. Theor. Biol.
246
(
4
),
583
603
(
2007
).
2.
H.
Enderling
and
A. R. A.
Anderson
, “
Mathematical modelling of radiotherapy strategies for early breast cancer
,”
J. Theor. Biol.
241
(
1
),
158
171
(
2006
).
3.
L. G.
de Pillis
,
A. E.
Radunskaya
, and
C. L.
Wiseman
, “
A validated mathematical model of cell-mediated immune response to tumour growth
,”
Cancer Res.
65
(
17
),
7950
7958
(
2005
).
4.
L. G.
de Pillis
,
W.
Gu
,
K. R.
Fister
,
T.
Head
,
K.
Maples
,
A.
Murugan
,
T.
Neal
, and
K.
Yoshida
, “
Chemotherapy for tumors: An analysis of the dynamics and a study of quadratic and linear optimal controls
,”
Math. Biosci.
209
(
1
),
292
315
(
2007
).
5.
M.
Al-Tameemi
,
M.
Chaplain
, and
A.
d’Onofrio
, “
Evasion of tumours from the control of the immune system: Consequences of brief encounters
,”
Biol. Direct.
7
(
31
),
1
22
(
2012
).
6.
K. J.
Mahasa
,
R.
Ouifki
,
A.
Eladdadi
, and
L.
de Pillis
, “
Mathematical model of tumor-immune surveillance
,”
J. Theor. Biol.
404
,
312
330
(
2016
).
7.
P.
Bi
,
S. G.
Ruan
, and
X. A.
Zhang
, “
Periodic and chaotic oscillations in a tumor and immune system interaction model with three delays
,”
Chaos
24
(
2
),
023101
(
2014
).
8.
H.
Schattler
and
U.
Ledzewicz
,
Optimal Control for Mathematical Models of Cancer Therapies
(
Springer
,
New York
,
2015
).
9.
Q.
Guo
,
Z. C.
Lu
,
Y.
Hirata
, and
K.
Aihara
, “
Parameter estimation and optimal scheduling algorithm for a mathematical model of intermittent androgen suppression therapy for prostate cancer
,”
Chaos
23
(
4
),
043125
(
2013
).
10.
R.
Padmanabhan
,
N.
Meskin
, and
W. M.
Haddad
, “
Reinforcement learning-based control of drug dosing for cancer chemotherapy treatment
,”
Math. Biosci.
293
,
11
20
(
2017
).
11.
P.
Rokhforoz
,
A. A.
Jamshidi
, and
N. N.
Sarvestani
, “
Adaptive robust control of cancer chemotherapy with extended Kalman filter observer
,”
Inf. Med. Unlocked
8
,
1
7
(
2017
).
12.
M.
Alkama
,
A.
Larrache
,
M.
Rachik
, and
I.
Elmouki
, “
Optimal duration and dosage of BCG intravesical immunotherapy: A free final time optimal control approach
,”
Math. Meth. Appl. Sci.
41
(
5
),
2209
2219
(
2018
).
13.
A.
Ghaffari
,
B.
Bahmaie
, and
M.
Nazari
, “
A mixed radiotherapy and chemotherapy model for treatment of cancer with metastasis
,”
Math. Method. Appl. Sci.
39
(
15
),
4603
4617
(
2016
).
14.
S.
Sharma
and
G. P.
Samanta
, “
Analysis of the dynamics of a tumor-immune system with chemotherapy and immunotherapy and quadratic optimal control
,”
Differ. Equ. Dyn. Syst.
24
(
2
),
149
171
(
2016
).
15.
A.
Mvogo
and
T. C.
Kofane
, “
Fractional formalism to DNA chain and impact of the fractional order on breather dynamics
,”
Chaos
26
(
12
),
123120
(
2016
).
16.
C.
Ionescu
,
A.
Lopes
,
D.
Copot
,
J. A. T.
Machado
, and
J. H. T.
Bates
, “
The role of fractional calculus in modeling biological phenomena: A review
,”
Commun. Nonlinear Sci.
51
,
141
159
(
2017
).
17.
H. G.
Sun
,
Y.
Zhang
,
D.
Baleanu
,
W.
Chen
, and
Y. Q.
Chen
, “
A new collection of real world applications of fractional calculus in science and engineering
,”
Commun. Nonlinear Sci.
64
,
213
231
(
2018
).
18.
F. A.
Rihan
, “
Numerical modeling of fractional-order biological systems
,”
Abstr. Appl. Anal.
2013
,
816803
(
2013
).
19.
A. R. M.
Carvalho
,
C. M. A.
Pinto
, and
D.
Baleanu
, “
HIV/HCV coinfection model: A fractional-order perspective for the effect of the HIV viral load
,”
Adv. Differ. Equ.
2018
(
2
),
1
22
(
2018
).
20.
C. M. A.
Pinto
,
A. R. M.
Carvalho
, and
J. N.
Tavares
, “
Time-varying pharmacodynamics in a simple non-integer HIV infection model
,”
Math. Biosci.
307
,
1
12
(
2019
).
21.
C. M. A.
Pinto
and
A. R. M.
Carvalho
, “
Fractional dynamics of an infection model with time-varying drug exposure
,”
J. Comput. Nonlin. Dyn.
13
(
9
),
090904
(
2018
).
22.
C. M. A.
Pinto
and
J. A. T.
Machado
, “
Fractional model for malaria transmission under control strategies
,”
Comput. Math. Appl.
66
(
5
),
908
916
(
2013
).
23.
N. H.
Sweilam
and
S. M.
Al-Mekhlafi
, “
On the optimal control for fractional multi-strain TB model
,”
Optim. Contr. Appl. Met.
37
(
6
),
1355
1374
(
2016
).
24.
N. H.
Sweilam
and
S. M.
Al-Mekhlafi
, “
Legendre spectral-collocation method for solving fractional optimal control of HIV infection of CD4+ T cells mathematical model
,”
J. Def. Model. Simul.
14
(
3
),
273
284
(
2017
).
25.
L.
Elal
,
N. H.
Sweilam
,
A. M.
Nagy
, and
Y. S.
Almaghrebi
, “
Computational methods for the fractional optimal control HIV infection
,”
J. Fract. Calc. Appl.
7
(
2
),
121
131
(
2016
).
26.
N. H.
Sweilam
and
S. M.
Al-Mekhlafi
, “
Optimal control for a nonlinear mathematical model of tumor under immune suppression: A numerical approach
,”
Optim. Contr. Appl. Met.
39
(
5
),
1581
1596
(
2018
).
27.
A.
Jajarmi
and
D.
Baleanu
, “
A new fractional analysis on the interaction of HIV with CD4+ T-cells
,”
Chaos Soliton. Fract.
113
,
221
229
(
2018
).
28.
M.
Caputo
and
M.
Fabrizio
, “
A new definition of fractional derivative without singular kernel
,”
Progr. Fract. Differ. Appl.
1
(
2
),
73
85
(
2015
).
29.
A.
Atangana
and
D.
Baleanu
, “
New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model
,”
Therm. Sci.
20
(
2
),
763
769
(
2016
).
30.
M. D.
Ortigueira
,
V.
Martynyuk
,
M.
Fedula
, and
J. A. T.
Machado
, “
The failure of certain fractional calculus operators in two physical models
,”
Fract. Calc. Appl. Anal.
22
(
2
),
255
270
(
2019
).
31.
A.
Yusuf
,
S.
Qureshi
,
M.
Inc
,
A. I.
Aliyu
,
D.
Baleanu
, and
A. A.
Shaikh
, “
Two-strain epidemic model involving fractional derivative with Mittag-Leffler kernel
,”
Chaos
28
(
12
),
123121
(
2018
).
32.
I.
Khan
, “
New idea of Atangana, Baleanu fractional derivatives to human blood flow in nanofluids
,”
Chaos
29
(
1
),
013121
(
2019
).
33.
K. M.
Owolabi
and
A.
Atangana
, “
On the formulation of Adams-Bashforth scheme with Atangana-Baleanu-Caputo fractional derivative to model chaotic problems
,”
Chaos
29
(
2
),
023111
(
2019
).
34.
S.
Qureshi
,
A.
Yusuf
,
A. A.
Shaikh
,
M.
Inc
, and
D.
Baleanu
, “
Fractional modeling of blood ethanol concentration system with real data application
,”
Chaos
29
(
1
),
013143
(
2019
).
35.
S.
Das
,
Functional Fractional Calculus for System Identification and Controls
(
Springer Verlag
,
Berlin
,
2007
).
36.
S. G.
Samko
,
A. A.
Kilbas
, and
O. I.
Marichev
,
Fractional Integrals and Derivatives: Theory and Applications
(
CRC Press
,
1993
).
37.
J.
Singh
,
D.
Kumar
, and
D.
Baleanu
, “
On the analysis of chemical kinetics system pertaining to a fractional derivative with Mittag-Leffler type kernel
,”
Chaos
27
(
10
),
103113
(
2017
).
38.
A.
Atangana
and
J. F.
Gómez-Aguilar
, “
Fractional derivatives with no-index law property: Application to chaos and statistics
,”
Chaos Soliton. Fract.
114
,
516
535
(
2018
).
39.
K. M.
Saad
and
J. F.
Gómez-Aguilar
, “
Analysis of reaction-diffusion system via a new fractional derivative with non-singular kernel
,”
Physica A
509
(
1
),
703
716
(
2018
).
40.
A.
Atangana
and
S.
Jain
, “
The role of power decay, exponential decay and Mittag–Leffler function’s waiting time distribution: Application of cancer spread
,”
Physica A
512
(
15
),
330
351
(
2018
).
41.
K. M.
Saad
,
A.
Atangana
, and
D.
Baleanu
, “
New fractional derivatives with non-singular kernel applied to the Burgers equation
,”
Chaos
28
(
6
),
063109
(
2018
).
42.
V. A.
Kuznetsov
,
I. A.
Makalkin
,
M. A.
Taylor
, and
A. S.
Perelson
, “
Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis
,”
B. Math. Biol.
56
(
2
),
295
321
(
1994
).
43.
L. G.
de Pillis
,
W.
Gu
, and
A. E.
Radunskaya
, “
Mixed immunotherapy and chemotherapy of tumors: Modeling, applications and biological interpretations
,”
J. Theor. Biol.
238
(
4
),
841
862
(
2006
).
44.
L. G.
de Pillis
and
A. E.
Radunskaya
, “
A mathematical model of immune response to tumor invasion
,”
Comput. Fluid Solid Mech.
2003
,
1661
1668
(
2003
).
45.
K.
Diethelm
, “
A fractional calculus based model for the simulation of an outbreak of dengue fever
,”
Nonlinear Dynam.
71
(
4
),
613
619
(
2013
).
46.
C.
Li
and
F.
Zeng
, “
The finite difference methods for fractional ordinary differential equations
,”
Numer. Func. Anal. Opt.
34
(
2
),
149
179
(
2013
).
47.
B. P.
Moghaddam
,
S.
Yaghoobi
, and
J. A. T.
Machado
, “
An extended predictor-corrector algorithm for variable-order fractional delay differential equations
,”
J. Comput. Nonlin. Dyn.
11
(
6
),
061001
(
2016
).
48.
K. M.
Owolabi
and
A.
Atangana
, “
Analysis and application of new fractional Adams–Bashforth scheme with Caputo–Fabrizio derivative
,”
Chaos Soliton. Fract.
105
,
111
119
(
2017
).
49.
D.
Baleanu
,
A.
Jajarmi
, and
M.
Hajipour
, “
On the nonlinear dynamical systems within the generalized fractional derivatives with Mittag–Leffler kernel
,”
Nonlinear Dynam.
94
(
1
),
397
414
(
2018
).
50.
K.
Diethelm
and
A. D.
Freed
, “The FracPECE subroutine for the numerical solution of differential equations of fractional order,” Forsch. Wissen. Rechnen (1998); Gesellschaft für wissenschaftliche Datenverarbeitung, Göttingen, Germany, edited by S. Heinzel and T. Plesser (1999), pp. 57–71.
51.
R. K.
Biswas
and
S.
Sen
, “
Fractional optimal control problems with specified final time
,”
J. Comput. Nonlin. Dyn.
6
(
2
),
1
6
(
2010
).
52.
T. A.
Yıldız
,
A.
Jajarmi
,
B.
Yıldız
, and
D.
Baleanu
, “
New aspects of time fractional optimal control problems within operators with nonsingular kernel
,”
Discrete Cont. Dyn. S
(published online
2019
).
53.
D.
Baleanu
,
A.
Jajarmi
, and
M.
Hajipour
, “
A new formulation of the fractional optimal control problems involving Mittag–Leffler nonsingular kernel
,”
J. Optimiz. Theory App.
175
(
3
),
718
737
(
2017
).
54.
B.
Zeng
and
S.
Liu
, “
A self-adaptive intelligence gray prediction model with the optimal fractional order accumulating operator and its application
,”
Math. Method Appl. Sci.
40
(
18
),
7843
7857
(
2017
).
You do not currently have access to this content.