We investigate the phenomenon of amplitude death [in two scenarios—traveling (TAD) and stationary] in coupled pendula with escapement mechanisms. The possible dynamics of the network is examined in coupling parameters’ plane, and the corresponding examples of attractors are discussed. We analyze the properties of the observed patterns, studying the period of one full cycle of TAD under the influence of system’s parameters, as well as the mechanism of its existence. It is shown, using the energy balance method, that the strict energy transfer between the pendula determines the direction in which the amplitude death travels from one unit to another. The occurrence of TAD is investigated as a result of a simple perturbation procedure, which shows that the transient dynamics on the road from complete synchronization to amplitude death is not straightforward. The pendula behavior during the transient processes is studied, and the influence of parameters and perturbation magnitude on the possible network’s response is described. Finally, we analyze the energy transfer during the transient motion, indicating the potential triggers leading to the desired state. The obtained results suggest that the occurrence of traveling amplitude death is related to the chaotic dynamics and the phenomenon appears as a result of completely random process.

1.
2.
M. K. S.
Yeung
and
S. H.
Strogatz
,
Phys. Rev. Lett.
82
,
648
(
1999
).
3.
J. M.
Bowman
,
J. Chem. Phys.
68
(
2
),
608
(
1978
).
4.
S. H.
Strogatz
and
I.
Stewart
,
Sci. Am.
269
(
6
),
102
(
1993
).
5.
S. K.
Han
,
C.
Kurrer
, and
Y.
Kuramoto
,
Phys. Rev. Lett.
75
,
3190
(
1995
).
6.
P.
Koluda
,
P.
Perlikowski
,
K.
Czolczynski
, and
T.
Kapitaniak
, “
Synchronization of two self-excited double pendula
,”
Eur. Phys. J. Spec. Top.
223
(
4
),
613
(
2014
).
7.
M.
Kapitaniak
,
K.
Czolczynski
,
P.
Perlikowski
,
A.
Stefanski
, and
T.
Kapitaniak
,
Phys. Rep.
517
(
1
),
1
(
2012
).
8.
K.
Czolczynski
,
P.
Perlikowski
,
A.
Stefanski
, and
T.
Kapitaniak
,
Prog. Theor. Phys.
125
(
3
),
473
(
2011
).
9.
K.
Czolczynski
,
P.
Perlikowski
,
A.
Stefanski
, and
T.
Kapitaniak
,
Chaos
21
(
2
),
023129
(
2011
).
10.
D. M.
Abrams
and
S. H.
Strogatz
,
Phys. Rev. Lett.
93
,
174102
(
2004
).
11.
12.
R. E.
Mirollo
and
S. H.
Strogatz
,
J. Stat. Phys.
60
(
1
),
245
(
1990
).
13.
A.
Prasad
,
M.
Dhamala
,
B. M.
Adhikari
, and
R.
Ramaswamy
,
Phys. Rev. E
81
,
027201
(
2010
).
14.
K.
Konishi
,
Phys. Rev. E
68
,
067202
(
2003
).
15.
A.
Sharma
and
M. D.
Shrimali
,
Phys. Rev. E
85
,
057204
(
2012
).
16.
17.
18.
R.
Dodla
,
A.
Sen
, and
G. L.
Johnston
,
Phys. Rev. E
69
,
056217
(
2004
).
19.
20.
R.
Karnatak
,
R.
Ramaswamy
, and
A.
Prasad
,
Phys. Rev. E
76
,
035201
(
2007
).
21.
A.
Koseska
,
E.
Volkov
, and
J.
Kurths
,
Phys. Rev. Lett.
111
,
024103
(
2013
).
22.
U.
Chaudhuri
and
A.
Prasad
,
Phys. Lett. A
378
(
9
),
713
(
2014
).
23.
S. R.
Huddy
and
J. D.
Skufca
,
IEEE Trans. Power Electron.
28
(
1
),
247
(
2013
).
24.
R.
Herrero
,
M.
Figueras
,
J.
Rius
,
F.
Pi
, and
G.
Orriols
,
Phys. Rev. Lett.
84
,
5312
(
2000
).
25.
D. V.
Ramana Reddy
,
A.
Sen
, and
G. L.
Johnston
,
Phys. Rev. Lett.
85
,
3381
(
2000
).
26.
Y.
Zhai
,
I. Z.
Kiss
, and
J. L.
Hudson
,
Phys. Rev. E
69
,
026208
(
2004
).
27.
V.
Resmi
,
G.
Ambika
, and
R. E.
Amritkar
,
Phys. Rev. E
84
,
046212
(
2011
).
28.
G.
Saxena
,
A.
Prasad
, and
R.
Ramaswamy
,
Phys. Rep.
521
(
5
),
205
(
2012
).
29.
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
,
Phys. Rev. Lett.
57
,
1284
(
1986
).
30.
B.-C.
Bao
,
Z.
Liu
, and
J.-P.
Xu
,
Chin. Phys. B
19
(
3
),
030510
(
2010
).
31.
C.
Soize
,
Probab. Eng. Mech.
16
(
4
),
363
(
2001
).
32.
M. I.
Rabinovich
,
R.
Huerta
,
P.
Varona
, and
V. S.
Afraimovich
,
PLoS Comput. Biol.
4
(
5
),
e1000072
(
2008
).
33.
34.
M.
Rabinovich
,
R.
Huerta
, and
G.
Laurent
,
Science
321
(
5885
),
48
(
2008
).
35.
A.
Hastings
,
Trends Ecol. Evol.
19
(
1
),
39
(
2004
).
36.
A.
Hastings
,
K. C.
Abbott
,
K.
Cuddington
,
T.
Francis
,
G.
Gellner
,
Y.-C.
Lai
,
A.
Morozov
,
S.
Petrovskii
,
K.
Scranton
, and
M. L.
Zeeman
,
Science
361
,
6406
(
2018
).
37.
G.
Chen
,
N. V.
Kuznetsov
,
G. A.
Leonov
, and
T. N.
Mokaev
,
Int. J. Bifurcat. Chaos
27
(
08
),
1750115
(
2017
).
38.
N. V.
Kuznetsov
,
G. A.
Leonov
,
T. N.
Mokaev
,
A.
Prasad
, and
M. D.
Shrimali
,
Nonlinear Dyn.
92
(
2
),
267
(
2018
).
You do not currently have access to this content.