A stochastic reaction-diffusion model is studied on a networked support. In each patch of the network, two species are assumed to interact following a non-normal reaction scheme. When the interaction unit is replicated on a directed linear lattice, noise gets amplified via a self-consistent process, which we trace back to the degenerate spectrum of the embedding support. The same phenomenon holds when the system is bound to explore a quasidegenerate network. In this case, the eigenvalues of the Laplacian operator, which governs species diffusion, accumulate over a limited portion of the complex plane. The larger the network, the more pronounced the amplification. Beyond a critical network size, a system deemed deterministically stable, hence resilient, can develop seemingly regular patterns in the concentration amount. Non-normality and quasidegenerate networks may, therefore, amplify the inherent stochasticity and so contribute to altering the perception of resilience, as quantified via conventional deterministic methods.

1.
M. G.
Neubert
and
H.
Caswell
,
Ecology
78
(
3
),
653
665
(
1997
).
2.
L. H.
Gunderson
,
C. R.
Allen
, and
C. S.
Holling
,
Foundation of Ecological Resilience
(
Island Press
,
2009
).
3.
C.
Folke
,
Global Environ. Change
16
(
3
),
253
267
(
2006
).
4.
J. D.
Murray
,
Mathematical Biology
, 2nd ed. (
Springer
,
New York
,
2003
).
5.
S. H.
Strogatz
,
Sync: The Emerging Science of Spontaneous Order
(
Penguin
,
2004
).
6.
S. H.
Strogatz
,
Nonlinear Dynamics and Chaos
(
Westview Press
,
2015
).
7.
P. J.
Menck
,
J.
Heitzig
,
N.
Marwan
, and
J.
Kurths
,
Nat. Phys.
9
,
89
92
(
2013
).
8.
L. N.
Trefethen
and
M.
Embree
,
Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators
(
Princeton University Press
,
Princeton
,
2005
).
9.
D.
Fanelli
,
F.
Ginelli
,
R.
Livi
,
N.
Zagli
, and
C.
Zankoc
,
Phys. Rev. E
96
,
062313
(
2017
).
10.
S.
Nicoletti
,
N.
Zagli
,
D.
Fanelli
,
R.
Livi
,
T.
Carletti
, and
G.
Innocenti
,
Phys. Rev. E
98
,
032214
(
2018
).
11.
R.
Benzi
,
A.
Sutera
, and
A.
Vulpiani
,
J. Phys. A
14
(
11
),
453
(
1981
).
12.
L.
Gammaitoni
,
P.
Hänggi
,
P.
Jung
, and
F.
Marchesoni
,
Rev. Mod. Phys.
70
(
1
),
223
287
(
1998
).
13.
W.
Fleming
and
R.
Rishel
,
Deterministic and Stochastic Optimal Control
(
Springer
,
1975
).
14.
S.
Boccaletti
,
A. N.
Pisarchik
,
C. I.
Del Genio
, and
A.
Amann
,
Synchronization: From Coupled Systems to Complex Networks
(
Cambridge University Press
,
2018
).
15.
H. G.
Othmer
and
L. E.
Scriven
,
J. Theor. Biol.
32
,
507
(
1971
).
16.
H. G.
Othmer
and
L. E.
Scriven
,
J. Theor. Biol.
43
,
83
(
1974
).
17.
H.
Nakao
and
A. S.
Mikhailov
,
Nat. Phys.
6
,
544
(
2010
).
18.
H.
Nakao
,
Eur. Phys. J. Spec. Top.
223
,
2411
(
2014
).
19.
M.
Asllani
,
J. D.
Challenger
,
F. S.
Pavone
,
L.
Sacconi
, and
D.
Fanelli
,
Nat. Commun.
5
,
4517
(
2014
).
20.
S.
Hata
,
H.
Nakao
, and
A. S.
Mikhailov
,
Sci. Rep.
4
,
3585
(
2014
).
21.
M.
Asllani
,
D. M.
Busiello
,
T.
Carletti
,
D.
Fanelli
, and
G.
Planchon
,
Phys. Rev. E
90
,
042814
(
2014
).
22.
N. E.
Kouvaris
,
S.
Hata
, and
A.
Diaz-Guilera
,
Sci. Rep.
5
,
10840
(
2015
).
23.
F.
Di Patti
,
D.
Fanelli
,
F.
Miele
, and
T.
Carletti
,
Chaos Solitons Fractals
96
,
8
(
2017
).
24.
J. D.
Challenger
,
R.
Burioni
, and
D.
Fanelli
,
Phys. Rev. E
92
,
022818
(
2015
).
25.
F.
Di Patti
,
D.
Fanelli
,
F.
Miele
, and
T.
Carletti
,
Commun. Nonlinear Sci. Numer. Simul.
56
,
447
456
(
2018
).
26.
G.
Cencetti
,
F.
Bagnoli
,
G.
Battistelli
,
L.
Chisci
,
F.
Di Patti
, and
D.
Fanelli
,
Eur. Phys. J. B
90
,
9
(
2017
).
27.
M.
Asllani
,
D. M.
Busiello
,
T.
Carletti
,
D.
Fanelli
, and
G.
Planchon
,
Phys. Rev. E
90
,
042814
(
2014
).
28.
L. M.
Pecora
and
T. L.
Carroll
,
Phys. Rev. Lett.
80
,
2109
(
1998
).
29.
A. M.
Turing
,
Philos. Trans. R. Soc. London B
237
,
37
(
1952
).
30.
R.
Muolo
,
M.
Asllani
,
D.
Fanelli
,
P. K.
Maini
, and
T.
Carletti
,
J. Theor. Biol.
480
,
81
(
2019
).
31.
N. G.
van Kampen
,
Stochastic Processes in Physics and Chemistry
, 3rd ed. (
Elsevier
,
Amsterdam
,
2007
).
32.
C. W.
Gardiner
,
Handbook of Stochastic Methods
(
Springer
,
Berlin
,
2004
).
33.
M.
Asllani
,
T.
Biancalani
,
D.
Fanelli
, and
A. J.
McKane
,
Eur. Phys. J. B
86
,
476
(
2013
).
34.
M.
Asllani
,
F.
Di Patti
, and
D.
Fanelli
,
Phys. Rev. E
86
,
046105
(
2012
).
35.
T.
Biancalani
,
F.
Fafarpour
, and
N.
Goldenfeld
,
Phys. Rev. Lett.
118
,
018101
(
2017
).
36.
C.
Zankoc
,
D.
Fanelli
,
F.
Ginelli
, and
R.
Livi
,
Phys. Rev. E
99
,
012303
(
2019
).
37.
M.
Asllani
,
R.
Lambiotte
, and
T.
Carletti
,
Sci. Adv.
4
,
eaau9403
(
2018
).
38.
M.
Asllani
and
T.
Carletti
,
Phys. Rev. E
97
,
042302
(
2018
).
39.
M. E. J.
Newman
,
Networks: An Introduction
(
OUP
,
Oxford
,
2010
).
40.
S.
Boccaletti
,
V.
Latora
,
Y.
Moreno
,
M.
Chavez
, and
D. U.
Hwang
,
Phys. Rep.
424
(
4
),
175
308
(
2006
).
41.
R.
Albert
and
A.-L.
Barabasi
,
Rev. Mod. Phys.
74
,
47
97
(
2002
).
42.
A.
Barrat
,
M.
Barthélemy
, and
A.
Vespignani
,
Dynamical Processes on Complex Networks
, 1st ed. (
CUP
,
Cambridge
,
2008
).
43.
M.
Asllani
,
J. D.
Challenger
,
F. S.
Pavone
,
L.
Sacconi
, and
D.
Fanelli
,
Nat. Commun.
5
,
4517
(
2014
).
44.
G.
Nicolis
and
I.
Prigogine
,
Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order Through Fluctuations
(
Wiley
,
1977
).
45.
T.
Biancalani
,
D.
Fanelli
, and
F.
Di Patti
,
Phys. Rev. E
81
,
046215
(
2010
).
46.
H.
Risken
and
T.
Frank
,
The Fokker-Planck Equation
(
Springer
,
1996
).
47.
D. M.
Abrams
and
S. H.
Strogatz
,
Phys. Rev. Lett.
93
,
174102
(
2004
).
48.
E.
Schöll
,
Eur. Phys. J. Spec. Top.
225
,
891
919
(
2016
).
49.
M. J.
Panaggio
and
D. M.
Abrams
,
Nonlinearity
28
,
R67
(
2015
).
50.
R. J.
Deissler
and
K.
Kaneko
,
Phys. Lett. A
119
,
397
(
1987
).
51.
S.
Lepri
,
A.
Politi
, and
A.
Torcini
,
J. Stat. Phys.
82
,
1429
(
1996
).
52.
S.
Lepri
,
A.
Politi
, and
A.
Torcini
,
J. Stat. Phys.
88
,
31
(
1997
).
53.
A. K.
Jiotsa
,
A.
Politi
, and
A.
Torcini
,
J. Phys. A
46
,
254013
(
2013
).
54.
T.
Elmhirst
and
M.
Golubitsky
,
SIAM J. Appl. Dyn. Syst.
5
,
205
251
(
2006
).
55.
B.
Rink
and
J.
Sanders
,
SIAM J. Appl. Dyn. Syst.
12
,
1135
1157
(
2013
).
You do not currently have access to this content.