This work provides an analysis of experiments in which various modes of mercury flow in a constant external magnetic field were observed; we examined the temperature oscillations in the mercury flow in a heated pipe at various Reynolds and Hartmann numbers. In some modes, the temperature oscillations have specific forms of strong aperiodic “bursts” over the weak irregular background, which are specific to the developed turbulent flow. To determine the nature of these temperature oscillations and the characteristics of the fluid flow, we examined them through the apparatus of nonlinear dynamics. The totality of all the results (autocorrelation function, correlation integral, maximum Lyapunov exponents, and Fourier transform) provide evidence of the chaotic nature of the observed flow modes despite the relative weakness of high-frequency harmonics in comparison to low-frequency ones. In the case of separate bursts of turbulence, the duration of the laminar phase τ follows the known distribution ∼τ–3/2, derived from the theory of on-off intermittency.

1.
P. B.
Minnini
,
A.
Alexakis
, and
A.
Pouquet
, “
Energy transfer in Hall-MHD turbulence: Cascades, backscatter, and dynamo action
,”
J. Plasma Phys.
73
,
377
401
(
2007
).
2.
A.
Alexakis
,
B.
Bigot
,
H.
Politano
, and
S.
Galtier
, “
Anisotropic fluxes and nonlocal interactions in magnetohydrodynamic turbulence
,”
Phys. Rev. E.
76
,
056313
(
2007
).
3.
A.
Alexakis
, “
Nonlocal phenomenology for anisotropic magnetohydrodynamic turbulence
,”
Astrophys J.
667
,
L93
L96
(
2007
).
4.
A.
Alexakis
,
P. B.
Minnini
, and
A.
Pouquet
, “
Turbulent cascades, transfer, and scale interactions in magnetohydrodynamics
,”
New J. Phys.
9
,
298
(
2007
).
5.
S.
Servidio
,
W. H.
Matthaeus
, and
P.
Dmitruk
, “
Depression of nonlinearity in decaying isotropic MHD turbulence
,”
Phys. Rev. Lett.
100
,
095005
(
2008
).
6.
A.
Beresnyak
, “
Spectral slope and Kolmogorov constant of MHD turbulence
,”
Phys. Rev. Lett.
106
,
075001
(
2011
).
7.
A.
Verdini
and
R.
Grappin
, “
Transition from weak to strong cascade in MHD turbulence
,”
Phys. Rev. Lett.
109
,
025004
(
2012
).
8.
A.
Alexakis
, “
Large-scale magnetic fields in magnetohydrodynamic turbulence
,”
Phys. Rev. Lett.
110
,
084502
(
2013
).
9.
V.
Dallas
and
A.
Alexakis
, “
Self-organisation and non-linear dynamics in driven magnetohydrodynamic turbulent flows
,”
Phys. Fluids
27
,
045105
(
2015
).
10.
X. M.
Zhai
,
K. R.
Sreenivasan
, and
P. K.
Yeung
, “
Cancellation exponents in isotropic turbulence and magnetohydrodynamic turbulence
,”
Phys. Rev. E
99
,
023102
(
2019
).
11.
I.
Belyaev
,
P.
Frick
,
N.
Razuvanov
,
E.
Sviridov
, and
V.
Sviridov
, “
Temperature pulsations in a nonisothermal mercury pipe flow affected by a strong transverse magnetic field
,”
Int. J. Heat Mass Transfer.
127
,
566
572
(
2018
).
12.
P.
Berge
,
Y.
Pomeau
, and
C.
Vidal
,
Order Within Chaos
(
Wiley-VCH
,
1987
).
13.
S.
Elaskar
and
E.
del Rio
,
New Advances on Chaotic Intermittency and Its Applications
(
Springer
,
2017
).
14.
N.
Platt
,
N. A.
Spiegel
, and
C.
Tresser
, “
On-off intermittency: A mechanism for bursting
,”
Phys. Rev. Lett.
70
(
3
),
279
282
(
1993
).
15.
J. F.
Heagy
,
N.
Platt
, and
S. M.
Hammel
, “
Characterization of on-off intermittency
,”
Phys. Rev. E
49
(
2
),
1140
1150
(
1994
).
16.
P. W.
Hammer
,
N.
Platt
,
S. M.
Hammel
,
J. F.
Heagy
, and
B. D.
Lee
, “
Experimental observation of on-off intermittency
,”
Phys. Rev. Lett.
73
(
8
),
1095
1098
(
1994
).
17.
F.
Rodelsperger
,
A.
Cenis
, and
H.
Benner
, “
On-off intermittency in spin-wave instabilities
,”
Phys. Rev. Lett.
75
(
13
),
2594
2597
(
1995
).
18.
T.
John
,
U.
Behn
, and
R.
Stannarius
, “
Fundamental scaling laws of on-off intermittency in a stochastically driven dissipative pattern-forming system
,”
Phys. Rev. E
65
,
046229
(
2002
).
19.
R.
Delage
,
Y.
Takayama
, and
T.
Biwa
, “
On-off intermittency in coupled thermoacoustic oscillations
,”
Chaos
27
,
043111
(
2017
).
20.
A.
Alexakis
and
Y.
Ponty
, “
Effect of the Lorentz force on on-off dynamo intermittency
,”
Phys. Rev. E
77
,
056308
(
2008
).
21.
R. A.
Miranda
,
E. L.
Rempel
, and
A. C.-L.
Chian
, “
On–off intermittency and amplitude-phase synchronization in Keplerian shear flows
,”
Mon. Not. R. Astron. Soc.
448
,
803
813
(
2015
).
22.
F.
Heslot
,
B.
Castaing
, and
A.
Libchaber
, “
Transitions to turbulence in helium gas
,”
Phys. Rev. A
36
,
5870
5873
(
1987
).
23.
B.
Castaing
,
G.
Gunaratne
,
F.
Heslot
,
L.
Kadanoff
,
A.
Libchaber
,
S.
Thomae
,
X.-Z.
Wu
,
S.
Zaleski
, and
G.
Zanetti
, “
Scaling of hard thermal turbulence in Rayleigh-Benard convection
,”
J. Fluid Mech.
204
,
1
30
(
1989
).
24.
E. E.
DeLuca
,
J.
Werne
, and
R.
Rosner
, “
Numerical simulations of soft and hard turbulence: Preliminary results for two-dimensional convection
,”
Phys. Rev. Lett.
64
,
2370
2373
(
1990
).
25.
J. D.
Gibbon
and
M.
Gisselfalt
, “
On possibility of soft and hard turbulence in the complex Ginzburg–Landau Equation
,”
Physica D
44
,
421
444
(
1990
).
26.
H.
Iwasaki
and
S.
Toh
, “
Statistics and structures of strong turbulence in a complex Ginzburg-Landau equation
,”
Prog. Theor. Phys.
87
,
1127
1137
(
1992
).
27.
B. I.
Shraiman
,
A.
Pumir
,
W.
van Saarloos
,
P. C.
Hohenberg
,
H.
Chate
, and
M.
Holen
, “
Spatiotemporal chaos in the one-dimensional complex Ginzburg-Landau equation
,”
Physica D
57
,
241
248
(
1992
).
28.
S. L.
Christie
and
J. A.
Domaradzki
, “
Numerical evidence for nonuniversality of the soft/hard turbulence classification for thermal convection
,”
Phys. Fluids A Fluid Dyn.
5
,
412
421
(
1993
).
29.
I. A.
Belyaev
,
V. G.
Sviridov
,
V. M.
Batenin
,
D. A.
Biryukov
,
I. S.
Nikitina
,
S. P.
Manchkha
,
N. Y.
Pyatnitskaya
,
N. G.
Razuvanov
, and
E. V.
Sviridov
, “
Test facility for investigation of heat transfer of promising coolants for the nuclear power industry
,”
Therm. Eng.
64
(
11
),
841
848
(
2017
).
30.
I. A.
Belyaev
,
D. A.
Biryukov
,
N. Y.
Pyatnickaya
,
N. G.
Razuvanov
,
V. G.
Sviridov
, and
E. V.
Sviridov
, “
The technique of scanning probe measurements of temperature fields in the fluid flow
,”
Therm. Eng.
6
,
377
387
(
2019
).
31.
J. A.
Shercliff
, “
The flow of conductive fluids in circular pipes under transverse magnetic fields
,”
J. Fluid Mech.
1
(
6
),
644
666
(
1956
).
32.
P. H.
Roberts
, “
Singularities of Hartmann layers
,”
Proc. R. Soc. A
300
,
94
107
(
1967
).
33.
D.
Ruelle
and
F.
Takens
, “
On the nature of turbulence
,”
Commun. Math. Sci.
20
,
167
192
(
1971
).
34.
A. M.
Fraser
, “
Reconstructing attractors from scalar time series: A comparison of singular system and redundancy criteria
,”
Physica D
34
,
391
404
(
1989
).
35.
N. H.
Packard
,
J. P.
Crutchfield
,
J. D.
Farmer
, and
R. S.
Shaw
, “
Geometry from a time series
,”
Phys. Rev. Lett.
45
,
712
716
(
1980
).
36.
F.
Takens
, “
Detecting strange attractor in turbulence
,”
Lect. Notes Math.
898
,
366
380
(
1981
).
37.
H. S.
Greenside
,
A.
Wolf
,
J.
Swift
, and
T.
Pignataro
, “
Impracticality of a box-counting algorithm for calculating the dimensionality of strange attractors
,”
Phys. Rev. A
25
,
3453
3456
(
1982
).
38.
P.
Grassberger
and
I.
Procaccia
, “
Measuring the strangeness of strange attractors
,”
Physica D
9
,
189
208
(
1983
).
39.
K. P.
Harikrishnan
,
R.
Misra
, and
G.
Ambika
, “
Revisiting box-counting algorithm for the correlation dimension analysis of hyperchaotic time series
,”
Commun. Nonlin. Sci. Numer. Simul.
17
,
263
276
(
2012
).
40.
A.
Wolf
,
J. B.
Swift
,
H. L.
Swinney
, and
J. A.
Vastano
, “
Determining Lyapunov exponents from a time series
,”
Physica D
16
,
285
317
(
1985
).
41.
B. J.
West
,
M.
Bologna
, and
P.
Grigolini
,
Physics of Fractal Operators
(
Springer
,
2003
), p.
354
.
42.
R.
Gorenflo
,
J.
Loutchko
, and
Y.
Luchko
, “
Computation of the Mittag-Leffler function and its derivative
,”
Fractional Calculus Appl. Anal.
5
,
491
518
(
2002
);
R.
Gorenflo
,
J.
Loutchko
, and
Y.
Luchko
, “
Corrections to the paper ‘Computation of the Mittag-Leffler function and its derivative’
,”
Fractional Calculus Appl. Anal.
6
(
1
),
111
112
(
2003
).
43.
R.
Hilfer
and
H. J.
Seybold
, “
Computation of the generalized Mittag-Leffler function and its inverse in the complex plane
,”
Integral Transforms Spec. Funct.
17
(
9
),
637
652
(
2006
).
44.
H. J.
Seybold
and
R.
Hilfer
, “
Numerical results for the generalized Mittag-Leffler function
,”
Fractional Calculus Appl. Anal.
8
(
2
),
127
139
(
2005
).
You do not currently have access to this content.