How to couple different networks is a key issue in interdependent networks, where information sharing and payoff coupling are two frequently used methods. Unlike previous studies, in this paper, we propose a new coupling mode and test its performance in interdependent networks. Specifically, a player tends to seek additional support on another network only if his environment (defined as the proportion of holding different strategies in the neighborhood) is worse enough and exceeds an aspiration level. Conversely, it turns to the traditional version on single network if his environment is pleasing enough (the value of environment is small). Whether to establish additional support will directly influence the range of selecting fittest learning objects. As we can see from numerical results, moderate aspiration introduces diversity into the system and cooperation evolves with the support of network coupling. Besides, we also demonstrate that players with external links on the boundary of cooperative clusters protect internal cooperators and attract more players to cooperate under preferential selection rule.

1.
G.
Szabó
and
G.
Fath
, “
Evolutionary games on graphs
,”
Phys. Rep.
446
,
97
216
(
2007
).
2.
C. P.
Roca
,
J. A.
Cuesta
, and
A.
Sánchez
, “
Evolutionary game theory: Temporal and spatial effects beyond replicator dynamics
,”
Phys. Life Rev.
6
,
208
249
(
2009
).
3.
M.
Perc
and
A.
Szolnoki
, “
Coevolutionary games—A mini review
,”
Biosystems
99
,
109
125
(
2010
).
4.
Z.
Wang
,
M.
Jusup
,
L.
Shi
,
J.-H.
Lee
,
Y.
Iwasa
, and
S.
Boccaletti
, “
Exploiting a cognitive bias promotes cooperation in social dilemma experiments
,”
Nat. Commun.
9
,
2954
(
2018
).
5.
X.
Li
,
M.
Jusup
,
Z.
Wang
,
H.
Li
,
L.
Shi
,
B.
Podobnik
,
H. E.
Stanley
,
S.
Havlin
, and
S.
Boccaletti
, “
Punishment diminishes the benefits of network reciprocity in social dilemma experiments
,”
Proc. Natl. Acad. Sci. U.S.A.
115
,
30
35
(
2018
).
6.
A.
Szolnoki
and
M.
Perc
, “
Second-order free-riding on antisocial punishment restores the effectiveness of prosocial punishment
,”
Phys. Rev. X
7
,
041027
(
2017
).
7.
K.
Huang
,
Y.
Liu
,
Y.
Zhang
,
C.
Yang
, and
Z.
Wang
, “
Understanding cooperative behavior of agents with heterogeneous perceptions in dynamic networks
,”
Physica A
509
,
234
240
(
2018
).
8.
M. A.
Nowak
, “
Five rules for the evolution of cooperation
,”
Science
314
,
1560
1563
(
2006
).
9.
M. A.
Nowak
and
R. M.
May
, “
Evolutionary games and spatial chaos
,”
Nature
359
,
826
(
1992
).
10.
S.
Ding
,
J.
Wang
,
S.
Ruan
, and
C.
Xia
, “
Inferring to individual diversity promotes the cooperation in the spatial prisoner’s dilemma game
,”
Chaos Solitons Fractals
71
,
91
99
(
2015
).
11.
Z.
Wang
,
S.
Kokubo
,
J.
Tanimoto
,
E.
Fukuda
, and
K.
Shigaki
, “
Insight into the so-called spatial reciprocity
,”
Phys. Rev. E
88
,
042145
(
2013
).
12.
K. A.
Kabir
,
J.
Tanimoto
, and
Z.
Wang
, “
Influence of bolstering network reciprocity in the evolutionary spatial prisoner’s dilemma game: A perspective
,”
Eur. Phys. J. B
91
,
312
(
2018
).
13.
J.
Tanimoto
, “Social dilemma analysis for modeling traffic flow,” in Evolutionary Games with Sociophysics (Springer, 2018), pp. 105–154.
14.
M. A.
Nowak
,
S.
Bonhoeffer
, and
R. M.
May
, “
More spatial games
,”
Int. J. Bifurcat. Chaos
4
,
33
56
(
1994
).
15.
G.
Szabó
and
C.
Tőke
, “
Evolutionary prisoner’s dilemma game on a square lattice
,”
Phys. Rev. E
58
,
69
(
1998
).
16.
K.
Huang
,
Y.
Zhang
,
Y.
Li
,
C.
Yang
, and
Z.
Wang
, “
Effects of external forcing on evolutionary games in complex networks
,”
Chaos
28
,
093108
(
2018
).
17.
C.
Xia
,
S.
Ding
,
C.
Wang
,
J.
Wang
, and
Z.
Chen
, “
Risk analysis and enhancement of cooperation yielded by the individual reputation in the spatial public goods game
,”
IEEE Syst. J.
11
,
1516
1525
(
2017
).
18.
G.
Abramson
and
M.
Kuperman
, “
Social games in a social network
,”
Phys. Rev. E
63
,
030901
(
2001
).
19.
B. J.
Kim
,
A.
Trusina
,
P.
Holme
,
P.
Minnhagen
,
J. S.
Chung
, and
M.
Choi
, “
Dynamic instabilities induced by asymmetric influence: Prisoners’ dilemma game in small-world networks
,”
Phys. Rev. E
66
,
021907
(
2002
).
20.
N.
Masuda
and
K.
Aihara
, “
Spatial prisoner’s dilemma optimally played in small-world networks
,”
Phys. Lett. A
313
,
55
61
(
2003
).
21.
M.
Tomassini
,
L.
Luthi
, and
M.
Giacobini
, “
Hawks and doves on small-world networks
,”
Phys. Rev. E
73
,
016132
(
2006
).
22.
J.
Vukov
,
G.
Szabó
, and
A.
Szolnoki
, “
Cooperation in the noisy case: Prisoner’s dilemma game on two types of regular random graphs
,”
Phys. Rev. E
73
,
067103
(
2006
).
23.
F.
Fu
,
L.-H.
Liu
, and
L.
Wang
, “
Evolutionary prisoner’s dilemma on heterogeneous Newman-Watts small-world network
,”
Eur. Phys. J. B
56
,
367
372
(
2007
).
24.
J.
Vukov
,
G.
Szabó
, and
A.
Szolnoki
, “
Evolutionary prisoner’s dilemma game on Newman-Watts networks
,”
Phys. Rev. E
77
,
026109
(
2008
).
25.
F. C.
Santos
and
J. M.
Pacheco
, “
Scale-free networks provide a unifying framework for the emergence of cooperation
,”
Phys. Rev. Lett.
95
,
098104
(
2005
).
26.
J.
Gómez-Gardenes
,
M.
Campillo
,
L. M.
Floría
, and
Y.
Moreno
, “
Dynamical organization of cooperation in complex topologies
,”
Phys. Rev. Lett.
98
,
108103
(
2007
).
27.
Z.
Rong
,
X.
Li
, and
X.
Wang
, “
Roles of mixing patterns in cooperation on a scale-free networked game
,”
Phys. Rev. E
76
,
027101
(
2007
).
28.
S.
Assenza
,
J.
Gómez-Gardeñes
, and
V.
Latora
, “
Enhancement of cooperation in highly clustered scale-free networks
,”
Phys. Rev. E
78
,
017101
(
2008
).
29.
F. C.
Santos
,
M. D.
Santos
, and
J. M.
Pacheco
, “
Social diversity promotes the emergence of cooperation in public goods games
,”
Nature
454
,
213
(
2008
).
30.
J.
Poncela
,
J.
Gómez-Gardenes
, and
Y.
Moreno
, “
Cooperation in scale-free networks with limited associative capacities
,”
Phys. Rev. E
83
,
057101
(
2011
).
31.
J.
Poncela
,
J.
Gómez-Gardeñes
,
L. M.
Floría
,
Y.
Moreno
, and
A.
Sánchez
, “
Cooperative scale-free networks despite the presence of defector hubs
,”
Europhys. Lett.
88
,
38003
(
2009
).
32.
J.
Tanimoto
,
M.
Brede
, and
A.
Yamauchi
, “
Network reciprocity by coexisting learning and teaching strategies
,”
Phys. Rev. E
85
,
032101
(
2012
).
33.
M. G.
Zimmermann
,
V. M.
Eguíluz
, and
M.
San Miguel
, “
Coevolution of dynamical states and interactions in dynamic networks
,”
Phys. Rev. E
69
,
065102
(
2004
).
34.
A.
Szolnoki
and
M.
Perc
, “
Emergence of multilevel selection in the prisoner’s dilemma game on coevolving random networks
,”
New J. Phys.
11
,
093033
(
2009
).
35.
J.
Vukov
and
G.
Szabó
, “
Evolutionary prisoner’s dilemma game on hierarchical lattices
,”
Phys. Rev. E
71
,
036133
(
2005
).
36.
S.
Lee
,
P.
Holme
, and
Z.-X.
Wu
, “
Emergent hierarchical structures in multiadaptive games
,”
Phys. Rev. Lett.
106
,
028702
(
2011
).
37.
R.
Parshani
,
S. V.
Buldyrev
, and
S.
Havlin
, “
Interdependent networks: Reducing the coupling strength leads to a change from a first to second order percolation transition
,”
Phys. Rev. Lett.
105
,
048701
(
2010
).
38.
Z.
Wang
,
A.
Szolnoki
, and
M.
Perc
, “
Evolution of public cooperation on interdependent networks: The impact of biased utility functions
,”
Europhys. Lett.
97
,
48001
(
2012
).
39.
J.
Gómez-Gardenes
,
I.
Reinares
,
A.
Arenas
, and
L. M.
Floría
, “
Evolution of cooperation in multiplex networks
,”
Sci. Rep.
2
,
620
(
2012
).
40.
J.
Gómez-Gardenes
,
C.
Gracia-Lázaro
,
L. M.
Floría
, and
Y.
Moreno
, “
Evolutionary dynamics on interdependent populations
,”
Phys. Rev. E.
86
,
056113
(
2012
).
41.
B.
Wang
,
X.
Chen
, and
L.
Wang
, “
Probabilistic interconnection between interdependent networks promotes cooperation in the public goods game
,”
J. Stat. Mech. Theory Exp.
2012
,
P11017
(
2012
).
42.
C.
Xia
,
Q.
Miao
,
J.
Wang
, and
S.
Ding
, “
Evolution of cooperation in the traveler’s dilemma game on two coupled lattices
,”
Appl. Math. Comput.
246
,
389
398
(
2014
).
43.
C.
Xia
,
X.
Li
,
Z.
Wang
, and
M.
Perc
, “
Doubly effects of information sharing on interdependent network reciprocity
,”
New J. Phys.
20
,
075005
(
2018
).
44.
A.
Szolnoki
and
M.
Perc
, “
Information sharing promotes prosocial behaviour
,”
New J. Phys.
15
,
053010
(
2013
).
45.
Z.
Wang
,
L.
Wang
, and
M.
Perc
, “
Degree mixing in multilayer networks impedes the evolution of cooperation
,”
Phys. Rev. E
89
,
052813
(
2014
).
46.
L.-L.
Jiang
and
M.
Perc
, “
Spreading of cooperative behaviour across interdependent groups
,”
Sci. Rep.
3
,
2483
(
2013
).
47.
S.
Boccaletti
,
G.
Bianconi
,
R.
Criado
,
C. I.
Del Genio
,
J.
Gómez-Gardenes
,
M.
Romance
,
I.
Sendina-Nadal
,
Z.
Wang
, and
M.
Zanin
, “
The structure and dynamics of multilayer networks
,”
Phys. Rep.
544
,
1
122
(
2014
).
48.
Z.
Wang
and
M.
Perc
, “
Aspiring to the fittest and promotion of cooperation in the prisoner’s dilemma game
,”
Phys. Rev. E
82
,
021115
(
2010
).
49.
J.
Tanimoto
,
M.
Nakata
,
A.
Hagishima
, and
N.
Ikegaya
, “
Spatially correlated heterogeneous aspirations to enhance network reciprocity
,”
Physica A
391
,
680
685
(
2012
).
50.
T.
Ogasawara
,
J.
Tanimoto
,
E.
Fukuda
,
A.
Hagishima
, and
N.
Ikegaya
, “
Effect of a large gaming neighborhood and a strategy adaptation neighborhood for bolstering network reciprocity in a prisoner’s dilemma game
,”
J. Stat. Mech. Theory Exp.
2014
,
P12024
(
2014
).
51.
H.
Ito
and
J.
Tanimoto
, “
Scaling the phase-planes of social dilemma strengths shows game-class changes in the five rules governing the evolution of cooperation
,”
R. Soc. Open Sci.
5
,
181085
(
2018
).
52.
Z.
Wang
,
S.
Kokubo
,
M.
Jusup
, and
J.
Tanimoto
, “
Universal scaling for the dilemma strength in evolutionary games
,”
Phys. Life Rev.
14
,
1
30
(
2015
).
53.
J.
Tanimoto
and
H.
Sagara
, “
Relationship between dilemma occurrence and the existence of a weakly dominant strategy in a two-player symmetric game
,”
Biosystems
90
,
105
114
(
2007
).
You do not currently have access to this content.