We discover that the physically interesting PT-symmetric Dirac delta-function potentials can not only make sure that the non-Hermitian Hamiltonians admit fully-real linear spectra but also support stable peakons (nonlinear modes) in the Kerr nonlinear Schrödinger equation. For a specific form of the delta-function PT-symmetric potentials, the nonlinear model investigated in this paper is exactly solvable. However, for a class of PT-symmetric signum-function double-well potentials, a novel type of exact flat-top bright solitons can exist stably within a broad range of potential parameters. Intriguingly, the flat-top solitons can be characterized by the finite-order differentiable waveforms and admit the novel features differing from the usual solitons. The excitation features and the direction of transverse power flow of flat-top bright solitons are also explored in detail. These results are useful for the related experimental designs and applications in nonlinear optics and other related fields.

1.
C. M.
Bender
and
S.
Boettcher
, “
Real spectra in non-Hermitian Hamiltonians having PT symmetry
,”
Phys. Rev. Lett.
80
(
24
),
5243
(
1998
).
2.
Z.
Ahmed
, “
Real and complex discrete eigenvalues in an exactly solvable one-dimensional complex PT-invariant potential
,”
Phys. Lett. A
282
(
6
),
343
348
(
2001
).
3.
Z.
Musslimani
,
K. G.
Makris
,
R.
El-Ganainy
, and
D. N.
Christodoulides
, “
Optical solitons in PT periodic potentials
,”
Phys. Rev. Lett.
100
(
3
),
030402
(
2008
).
4.
Z.
Shi
,
X.
Jiang
,
X.
Zhu
, and
H.
Li
, “
Bright spatial solitons in defocusing Kerr media with PT-symmetric potentials
,”
Phys. Rev. A
84
(
5
),
053855
(
2011
).
5.
S.
Nixon
,
L.
Ge
, and
J.
Yang
, “
Stability analysis for solitons in PT-symmetric optical lattices
,”
Phys. Rev. A
85
(
2
),
023822
(
2012
).
6.
V.
Achilleos
,
P.
Kevrekidis
,
D.
Frantzeskakis
, and
R.
Carretero-González
, “
Dark solitons and vortices in PT-symmetric nonlinear media: From spontaneous symmetry breaking to nonlinear PT phase transitions
,”
Phys. Rev. A
86
(
1
),
013808
(
2012
).
7.
Z.
Yan
, “
Complex PT-symmetric nonlinear Schrödinger equation and Burgers equation
,”
Phil. Trans. R. Soc. A
371
(
1989
),
20120059
(
2013
).
8.
Y.
Lumer
,
Y.
Plotnik
,
M. C.
Rechtsman
, and
M.
Segev
, “
Nonlinearly induced PT transition in photonic systems
,”
Phys. Rev. Lett.
111
(
26
),
263901
(
2013
).
9.
Z.
Yan
,
Z.
Wen
, and
C.
Hang
, “
Spatial solitons and stability in self-focusing and defocusing Kerr nonlinear media with generalized parity-time-symmetric Scarff-II potentials
,”
Phys. Rev. E
92
(
2
),
022913
(
2015
).
10.
Z.-C.
Wen
and
Z.
Yan
, “
Dynamical behaviors of optical solitons in parity-time (PT) symmetric sextic anharmonic double-well potentials
,”
Phys. Lett. A
379
(
36
),
2025
2029
(
2015
).
11.
Z.
Yan
,
Z.
Wen
, and
V. V.
Konotop
, “
Solitons in a nonlinear Schrödinger equation with PT-symmetric potentials and inhomogeneous nonlinearity: Stability and excitation of nonlinear modes
,”
Phys. Rev. A
92
(
2
),
023821
(
2015
).
12.
A.
Guo
,
G.
Salamo
,
D.
Duchesne
,
R.
Morandotti
,
M.
Volatier-Ravat
,
V.
Aimez
,
G.
Siviloglou
, and
D.
Christodoulides
, “
Observation of PT-symmetry breaking in complex optical potentials
,”
Phys. Rev. Lett.
103
(
9
),
093902
(
2009
).
13.
C. E.
Rüter
,
K. G.
Makris
,
R.
El-Ganainy
,
D. N.
Christodoulides
,
M.
Segev
, and
D.
Kip
, “
Observation of parity-time symmetry in optics
,”
Nat. Phys.
6
(
3
),
192
195
(
2010
).
14.
A.
Regensburger
,
C.
Bersch
,
M.-A.
Miri
,
G.
Onishchukov
,
D. N.
Christodoulides
, and
U.
Peschel
, “
Parity-time synthetic photonic lattices
,”
Nature
488
(
7410
),
167
171
(
2012
).
15.
G.
Castaldi
,
S.
Savoia
,
V.
Galdi
,
A.
Alù
, and
N.
Engheta
, “
PT metamaterials via complex-coordinate transformation optics
,”
Phys. Rev. Lett.
110
(
17
),
173901
(
2013
).
16.
A.
Regensburger
,
M.-A.
Miri
,
C.
Bersch
,
J.
Näger
,
G.
Onishchukov
,
D. N.
Christodoulides
, and
U.
Peschel
, “
Observation of defect states in PT-symmetric optical lattices
,”
Phys. Rev. Lett.
110
(
22
),
223902
(
2013
).
17.
B.
Peng
,
Ş. K.
Özdemir
,
F.
Lei
,
F.
Monifi
,
M.
Gianfreda
,
G. L.
Long
,
S.
Fan
,
F.
Nori
,
C. M.
Bender
, and
L.
Yang
, “
Parity-time-symmetric whispering-gallery microcavities
,”
Nat. Phys.
10
(
5
),
394
398
(
2014
).
18.
A. A.
Zyablovsky
,
A. P.
Vinogradov
,
A. A.
Pukhov
,
A. V.
Dorofeenko
, and
A. A.
Lisyansky
, “
PT-symmetry in optics
,”
Phys. Usp.
57
(
11
),
1063
(
2014
).
19.
P.-Y.
Chen
and
J.
Jung
, “
PT symmetry and singularity-enhanced sensing based on photoexcited graphene metasurfaces
,”
Phys. Rev. Appl.
5
(
6
),
064018
(
2016
).
20.
K.
Takata
and
M.
Notomi
, “
PT-symmetric coupled-resonator waveguide based on buried heterostructure nanocavities
,”
Phys. Rev. Appl.
7
(
5
),
054023
(
2017
).
21.
E. A.
Ultanir
,
G. I.
Stegeman
, and
D. N.
Christodoulides
, “
Dissipative photonic lattice solitons
,”
Opt. Lett.
29
(
8
),
845
847
(
2004
).
22.
K. G.
Makris
,
R.
El-Ganainy
,
D. N.
Christodoulides
, and
Z. H.
Musslimani
, “
Beam dynamics in PT symmetric optical lattices
,”
Phys. Rev. Lett.
100
(
10
),
103904
(
2008
).
23.
K.
Makris
,
R.
El-Ganainy
,
D.
Christodoulides
, and
Z. H.
Musslimani
, “
PT-symmetric periodic optical potentials
,”
Int. J. Theor. Phys.
50
(
4
),
1019
1041
(
2011
).
24.
K. G.
Makris
,
R.
El-Ganainy
,
D. N.
Christodoulides
, and
Z. H.
Musslimani
, “
PT-symmetric optical lattices
,”
Phys. Rev. A
81
(
6
),
063807
(
2010
).
25.
Z. H.
Musslimani
,
K. G.
Makris
,
R.
El-Ganainy
, and
D. N.
Christodoulides
, “
Analytical solutions to a class of nonlinear Schrödinger equations with PT-like potentials
,”
J. Phys. A
41
(
24
),
244019
(
2008
).
26.
C.-Q.
Dai
,
X.-G.
Wang
, and
G.-Q.
Zhou
, “
Stable light-bullet solutions in the harmonic and parity-time-symmetric potentials
,”
Phys. Rev. A
89
(
1
),
013834
(
2014
).
27.
D. A.
Zezyulin
and
V. V.
Konotop
, “
Nonlinear modes in the harmonic PT-symmetric potential
,”
Phys. Rev. A
85
(
4
),
043840
(
2012
).
28.
S.
Hu
,
X.
Ma
,
D.
Lu
,
Z.
Yang
,
Y.
Zheng
, and
W.
Hu
, “
Solitons supported by complex PT-symmetric Gaussian potentials
,”
Phys. Rev. A
84
(
4
),
043818
(
2011
).
29.
J.
Yang
, “
Symmetry breaking of solitons in one-dimensional parity-time-symmetric optical potentials
,”
Opt. Lett.
39
(
19
),
5547
5550
(
2014
).
30.
C. P.
Jisha
,
L.
Devassy
,
A.
Alberucci
, and
V.
Kuriakose
, “
Influence of the imaginary component of the photonic potential on the properties of solitons in PT-symmetric systems
,”
Phys. Rev. A
90
(
4
),
043855
(
2014
).
31.
F. K.
Abdullaev
,
Y. V.
Kartashov
,
V. V.
Konotop
, and
D. A.
Zezyulin
, “
Solitons in PT-symmetric nonlinear lattices
,”
Phys. Rev. A
83
(
4
),
041805
(
2011
).
32.
N.
Moiseyev
, “
Crossing rule for a PT-symmetric two-level time-periodic system
,”
Phys. Rev. A
83
(
5
),
052125
(
2011
).
33.
C. P.
Jisha
,
A.
Alberucci
,
V. A.
Brazhnyi
, and
G.
Assanto
, “
Nonlocal gap solitons in PT-symmetric periodic potentials with defocusing nonlinearity
,”
Phys. Rev. A
89
(
1
),
013812
(
2014
).
34.
H.
Wang
and
D.
Christodoulides
, “
Two dimensional gap solitons in self-defocusing media with PT-symmetric superlattice
,”
Commun. Nonlinear Sci. Numer. Simul.
38
,
130
139
(
2016
).
35.
B.
Midya
and
R.
Roychoudhury
, “
Nonlinear localized modes in PT-symmetric Rosen-Morse potential wells
,”
Phys. Rev. A
87
(
4
),
045803
(
2013
).
36.
S. V.
Suchkov
,
A. A.
Sukhorukov
,
J.
Huang
,
S. V.
Dmitriev
,
C.
Lee
, and
Y. S.
Kivshar
, “
Nonlinear switching and solitons in PT-symmetric photonic systems
,”
Laser Photonics Rev.
10
(
2
),
177
213
(
2016
).
37.
H.
Cartarius
and
G.
Wunner
, “
Model of a PT-symmetric Bose-Einstein condensate in a δ-function double-well potential
,”
Phys. Rev. A
86
(
1
),
013612
(
2012
).
38.
F.
Single
,
H.
Cartarius
,
G.
Wunner
, and
J.
Main
, “
Coupling approach for the realization of a PT-symmetric potential for a Bose-Einstein condensate in a double well
,”
Phys. Rev. A
90
(
4
),
042123
(
2014
).
39.
G.
Burlak
and
B. A.
Malomed
, “
Stability boundary and collisions of two-dimensional solitons in PT-symmetric couplers with the cubic-quintic nonlinearity
,”
Phys. Rev. E
88
(
6
),
062904
(
2013
).
40.
Y. V.
Bludov
,
V. V.
Konotop
, and
B. A.
Malomed
, “
Stable dark solitons in PT-symmetric dual-core waveguides
,”
Phys. Rev. A
87
(
1
),
013816
(
2013
).
41.
R.
Fortanier
,
D.
Dast
,
D.
Haag
,
H.
Cartarius
,
J.
Main
,
G.
Wunner
, and
R.
Gutöhrlein
, “
Dipolar Bose-Einstein condensates in a PT-symmetric double-well potential
,”
Phys. Rev. A
89
(
6
),
063608
(
2014
).
42.
D.
Dizdarevic
,
D.
Dast
,
D.
Haag
,
J.
Main
,
H.
Cartarius
, and
G.
Wunner
, “
Cusp bifurcation in the eigenvalue spectrum of PT- symmetric Bose-Einstein condensates
,”
Phys. Rev. A
91
(
3
),
033636
(
2015
).
43.
C.-Q.
Dai
,
X.-F.
Zhang
,
Y.
Fan
, and
L.
Chen
, “
Localized modes of the (n+1)-dimensional Schrödinger equation with power-law nonlinearities in PT-symmetric potentials
,”
Commun. Nonlinear Sci. Numer. Simul.
43
,
239
250
(
2017
).
44.
P.
Li
,
D.
Mihalache
, and
L.
Li
, “
Asymmetric solitons in parity-time-symmetric double-hump Scarf-II potentials
,”
Rom. J. Phys.
61
,
1028
1039
(
2016
).
45.
R. J.
Lombard
and
R.
Mezhoud
, “
The linear complex PT-symmetric potential
,”
Rom. J. Phys.
62
,
112
(
2017
).
46.
P.
Li
and
D.
Mihalache
, “
Symmetry breaking of solitons in PT-symmetric potentials with competing cubic-quintic nonlinearity
,”
Proc. Rom. Acad. A
19
(
1
),
61
68
(
2018
).
47.
P.
Li
,
L.
Li
, and
D.
Mihalache
, “
Optical solitons in PT-symmetric potentials with competing cubic-quintic nonlinearity: Existence, stability, and dynamics
,”
Rom. Rep. Phys.
70
(
1
),
408
(
2018
).
48.
R. J.
Lombard
,
R.
Mezhoud
, and
R.
Yekken
, “
Complex potentials with real eigenvalues and the inverse problem
,”
Rom. J. Phys.
63
,
101
(
2018
).
49.
Z.
Yan
,
Y.
Chen
, and
Z.
Wen
, “
On stable solitons and interactions of the generalized Gross-Pitaevskii equation with PT-and non-PT-symmetric potentials
,”
Chaos
26
(
8
),
083109
(
2016
).
50.
Y.
Chen
,
Z.
Yan
, and
X.
Li
, “
One-and two-dimensional gap solitons and dynamics in the PT-symmetric lattice potential and spatially-periodic momentum modulation
,”
Commun. Nonlinear Sci. Numer. Simul.
55
,
287
297
(
2018
).
51.
Y.
Chen
and
Z.
Yan
, “
Solitonic dynamics and excitations of the nonlinear Schrödinger equation with third-order dispersion in non-Hermitian PT-symmetric potentials
,”
Sci. Rep.
6
,
23478
(
2016
).
52.
Y.
Chen
,
Z.
Yan
,
D.
Mihalache
, and
B. A.
Malomed
, “
Families of stable solitons and excitations in the PT-symmetric nonlinear Schrödinger equations with position-dependent effective masses
,”
Sci. Rep.
7
(
1
),
1257
(
2017
).
53.
Y.
Chen
and
Z.
Yan
, “
Stable parity-time-symmetric nonlinear modes and excitations in a derivative nonlinear Schrödinger equation
,”
Phys. Rev. E
95
(
1
),
012205
(
2017
).
54.
Z.
Yan
and
Y.
Chen
, “
The nonlinear Schrödinger equation with generalized nonlinearities and PT-symmetric potentials: Stable solitons, interactions, and excitations
,”
Chaos
27
(
7
),
073114
(
2017
).
55.
Z.
Wen
and
Z.
Yan
, “
Solitons and their stability in the nonlocal nonlinear Schrödinger equation with PT-symmetric potentials
,”
Chaos
27
(
5
),
053105
(
2017
).
56.
Y.
Shen
,
Z.
Wen
,
Z.
Yan
, and
C.
Hang
, “
Effect of PT symmetry on nonlinear waves for three-wave interaction models in the quadratic nonlinear media
,”
Chaos
28
(
4
),
043104
(
2018
).
57.
V. V.
Konotop
,
J.
Yang
, and
D. A.
Zezyulin
, “
Nonlinear waves in PT-symmetric systems
,”
Rev. Mod. Phys.
88
(
3
),
035002
(
2016
).
58.
Y.
He
,
B. A.
Malomed
, and
D.
Mihalache
, “
Localized modes in dissipative lattice media: An overview
,”
Philos. Trans. R. Soc. A
372
(
2027
),
20140017
(
2014
).
59.
D.
Mihalache
, “
Multidimensional localized structures in optical and matter-wave media: A topical survey of recent literature
,”
Rom. Rep. Phys.
69
(
1
),
403
(
2017
).
60.
R.
El-Ganainy
,
K. G.
Makris
,
M.
Khajavikhan
,
Z. H.
Musslimani
,
S.
Rotter
, and
D. N.
Christodoulides
, “
Non-Hermitian physics and PT symmetry
,”
Nat. Phys.
14
(
1
),
11
19
(
2018
).
61.
T.
Mayteevarunyoo
,
B. A.
Malomed
, and
A.
Reoksabutr
, “
Solvable model for solitons pinned to a parity-time-symmetric dipoles
,”
Phys. Rev. E
88
(
2
),
022919
(
2013
).
62.
I.
Barashenkov
and
D.
Zezyulin
, “Localised nonlinear modes in the PT-symmetric double-delta well Gross-Pitaevskii equation,” in Non-Hermitian Hamiltonians in Quantum Physics (Springer, 2016), pp. 123–142.
63.
I.
Barashenkov
,
D.
Zezyulin
, and
V.
Konotop
, “
Jamming anomaly in PT-symmetric systems
,”
New J. Phys.
18
(
7
),
075015
(
2016
).
64.
R.
Camassa
and
D. D.
Holm
, “
An integrable shallow water equation with peaked solitons
,”
Phys. Rev. Lett.
71
(
11
),
1661
(
1993
).
65.
J.
Lenells
, “
Traveling wave solutions of the Camassa-Holm equation
,”
J. Differ. Equ.
217
(
2
),
393
430
(
2005
).
66.
G.
Astrakharchik
and
B. A.
Malomed
, “
Dynamics of one-dimensional quantum droplets
,”
Phys. Rev. A
98
(
1
),
013631
(
2018
).
67.
A. E.
Siegman
,
Lasers
(
University Science Books
,
1986
).
68.
M. J.
Ablowitz
and
Z. H.
Musslimani
, “
Spectral renormalization method for computing self-localized solutions to nonlinear systems
,”
Opt. Lett.
30
(
16
),
2140
2142
(
2005
).
69.
J.
Yang
and
T. I.
Lakoba
, “
Universally-convergent squared-operator iteration methods for solitary waves in general nonlinear wave equations
,”
Stud. Appl. Math.
118
(
2
),
153
197
(
2007
).
70.
J.
Yang
, “
Newton-conjugate-gradient methods for solitary wave computations
,”
J. Comput. Phys.
228
(
18
),
7007
7024
(
2009
).
71.
J.
Yang
,
Nonlinear Waves in Integrable and Nonintegrable Systems
(
SIAM
,
2010
).
72.
K. I.
Pushkarov
,
D. I.
Pushkarov
, and
I. V.
Tomov
, “
Self-action of light beams in nonlinear media: Soliton solutions
,”
Opt. Quantum Electron.
11
,
471
478
(
1979
).
73.
L. C.
Crasovan
,
B. A.
Malomed
, and
D.
Mihalache
, “
Erupting, flat-top, and composite spiral solitons in the two-dimensional Ginzburg-Landau equation
,”
Phys. Lett. A
289
,
59
65
(
2001
).
74.
C.
Rizza
,
A.
Ciattoni
, and
E.
Palange
, “
Two-peaked and flat-top perfect bright solitons in nonlinear metamaterials with epsilon near zero
,”
Phys. Rev. A
83
,
053805
(
2011
).
75.
B. B.
Baizakov
,
A.
Bouketir
,
A.
Messikh
,
A.
Benseghir
, and
B. A.
Pumarov
, “
Variational analysis of flat-top solitons in Bose-Einstein condensates
,”
Int. J. Mod. Phys. B
25
(
18
),
2427
2440
(
2011
).
76.
N.
Karjanto
,
W.
Hanif
,
B. A.
Malomed
, and
H.
Susanto
, “
Interactions of bright and dark solitons with localized PT-symmetric potentials
,”
Chaos
25
(
2
),
023112
(
2015
).
You do not currently have access to this content.