Interacting particle systems with many degrees of freedom may undergo phase transitions to sustain atypical fluctuations of dynamical observables such as the current or the activity. In some cases, this leads to symmetry-broken space-time trajectories which enhance the probability of such events due to the emergence of ordered structures. Despite their conceptual and practical importance, these dynamical phase transitions (DPTs) at the trajectory level are difficult to characterize due to the low probability of their occurrence. However, during the last decade, advanced computational techniques have been developed to measure rare events in simulations of many-particle systems that allow the direct observation and characterization of these DPTs. Here we review the application of a particular rare-event simulation technique, based on cloning Monte Carlo methods, to characterize DPTs in paradigmatic stochastic lattice gases. In particular, we describe in detail some tricks and tips of the trade, paying special attention to the measurement of order parameters capturing the physics of the different DPTs, as well as to the finite-size effects (both in the system size and in the number of clones) that affect the measurements. Overall, we provide a consistent picture of the phenomenology associated with DPTs and their measurement.

1.
J. J.
Binney
,
N. J.
Dowrick
,
A. J.
Fisher
, and
M.
Newman
,
The Theory of Critical Phenomena: An Introduction to the Renormalization Group
(
Oxford University Press, Inc.
,
New York, NY
,
1992
).
2.
J.
Zinn-Justin
, Quantum Field Theory and Critical Phenomena, 4th ed., International Series of Monographs on Physics (Clarendon Press, Oxford, 2002).
3.
L.
Bertini
,
A.
De Sole
,
D.
Gabrielli
,
G.
Jona-Lasinio
, and
C.
Landim
, “
Current fluctuations in stochastic lattice gases
,”
Phys. Rev. Lett.
94
,
030601
(
2005
).
4.
T.
Bodineau
and
B.
Derrida
, “
Distribution of current in nonequilibrium diffusive systems and phase transitions
,”
Phys. Rev. E
72
,
066110
(
2005
).
5.
R. J.
Harris
,
A.
Rakos
, and
G. M.
Schutz
, “
Current fluctuations in the zero-range process with open boundaries
,”
J. Stat. Mech.
2005
,
P08003
(
2005
).
6.
L.
Bertini
,
A.
De Sole
,
D.
Gabrielli
,
G.
Jona-Lasinio
, and
C.
Landim
, “
Nonequilibrium current fluctuations in stochastic lattice gases
,”
J. Stat. Phys.
123
,
237
276
(
2006
).
7.
T.
Bodineau
and
B.
Derrida
, “
Cumulants and large deviations of the current through non-equilibrium steady states
,”
C. R. Phys.
8
,
540
(
2007
).
8.
V.
Lecomte
,
U. C.
Täuber
, and
F.
van Wijland
, “
Current distribution in systems with anomalous diffusion: Renormalization group approach
,”
J. Phys. A
40
,
1447
(
2007
).
9.
V.
Lecomte
,
C.
Appert-Rolland
, and
F.
van Wijland
, “
Thermodynamic formalism for systems with Markov dynamics
,”
J. Stat. Phys.
127
,
51
106
(
2007
).
10.
J. P.
Garrahan
,
R. L.
Jack
,
V.
Lecomte
,
E.
Pitard
,
K.
van Duijvendijk
, and
F.
van Wijland
, “
Dynamical first-order phase transition in kinetically constrained models of glasses
,”
Phys. Rev. Lett.
98
,
195702
(
2007
).
11.
T.
Bodineau
,
B.
Derrida
, and
J. L.
Lebowitz
, “
Vortices in the two-dimensional simple exclusion process
,”
J. Stat. Phys.
131
,
821
(
2008
).
12.
J. P.
Garrahan
,
R. L.
Jack
,
V.
Lecomte
,
E.
Pitard
,
K.
van Duijvendijk
, and
F.
van Wijland
, “
First-order dynamical phase transition in models of glasses: An approach based on ensembles of histories
,”
J. Phys. A
42
,
075007
(
2009
).
13.
L. O.
Hedges
,
R. L.
Jack
,
J. P.
Garrahan
, and
D.
Chandler
, “
Dynamic order-disorder in atomistic models of structural glass formers
,”
Science
323
,
1309
(
2009
).
14.
D.
Chandler
and
J. P.
Garrahan
, “
Dynamics on the way to forming glass: Bubbles in space-time
,”
Annu. Rev. Phys. Chem.
61
,
191
217
(
2010
).
15.
J. P.
Garrahan
and
I.
Lesanovsky
, “
Thermodynamics of quantum jump trajectories
,”
Phys. Rev. Lett.
104
,
160601
(
2010
).
16.
P. I.
Hurtado
and
P. L.
Garrido
, “
Spontaneous symmetry breaking at the fluctuating level
,”
Phys. Rev. Lett.
107
,
180601
(
2011
).
17.
J. P.
Garrahan
,
A. D.
Armour
, and
I.
Lesanovsky
, “
Quantum trajectory phase transitions in the micromaser
,”
Phys. Rev. E
84
,
021115
(
2011
).
18.
E.
Pitard
,
V.
Lecomte
, and
F.
Van Wijland
, “
Dynamic transition in an atomic glass former: A molecular-dynamics evidence
,”
Europhys. Lett.
96
,
56002
(
2011
).
19.
S.
Genway
,
J. P.
Garrahan
,
I.
Lesanovsky
, and
A. D.
Armour
, “
Phase transitions in trajectories of a superconducting single-electron transistor coupled to a resonator
,”
Phys. Rev. E
85
,
051122
(
2012
).
20.
C.
Ates
,
B.
Olmos
,
J. P.
Garrahan
, and
I.
Lesanovsky
, “
Dynamical phases and intermittency of the dissipative quantum Ising model
,”
Phys. Rev. A
85
,
043620
(
2012
).
21.
T.
Speck
,
A.
Malins
, and
C. P.
Royall
, “
First-order phase transition in a model glass former: Coupling of local structure and dynamics
,”
Phys. Rev. Lett.
109
,
195703
(
2012
).
22.
C.
Pérez-Espigares
,
P. L.
Garrido
, and
P. I.
Hurtado
, “
Dynamical phase transition for current statistics in a simple driven diffusive system
,”
Phys. Rev. E
87
,
032115
(
2013
).
23.
R. J.
Harris
,
V.
Popkov
, and
G. M.
Schütz
, “
Dynamics of instantaneous condensation in the ZRP conditioned on an atypical current
,”
Entropy
15
,
5065
(
2013
).
24.
R.
Villavicencio-Sanchez
,
R. J.
Harris
, and
H.
Touchette
, “
Fluctuation relations for anisotropic systems
,”
Europhys. Lett.
105
,
30009
(
2014
).
25.
I.
Lesanovsky
,
M.
van Horssen
,
M.
Guta
, and
J. P.
Garrahan
, “
Characterization of dynamical phase transitions in quantum jump trajectories beyond the properties of the stationary state
,”
Phys. Rev. Lett.
110
,
150401
(
2013
).
26.
P. I.
Hurtado
,
C. P.
Espigares
,
J. J.
del Pozo
, and
P. L.
Garrido
, “
Thermodynamics of currents in nonequilibrium diffusive systems: Theory and simulation
,”
J. Stat. Phys.
154
,
214
264
(
2014
).
27.
S.
Vaikuntanathan
,
T. R.
Gingrich
, and
P. L.
Geissler
, “
Dynamic phase transitions in simple driven kinetic networks
,”
Phys. Rev. E
89
,
062108
(
2014
).
28.
D.
Manzano
and
P. I.
Hurtado
, “
Symmetry and the thermodynamics of currents in open quantum systems
,”
Phys. Rev. B
90
,
125138
(
2014
).
29.
R. L.
Jack
,
I. R.
Thompson
, and
P.
Sollich
, “
Hyperuniformity and phase separation in biased ensembles of trajectories for diffusive systems
,”
Phys. Rev. Lett.
114
,
060601
(
2015
).
30.
O.
Shpielberg
and
E.
Akkermans
, “
Le Chatelier principle for out-of-equilibrium and boundary-driven systems: Application to dynamical phase transitions
,”
Phys. Rev. Lett.
116
,
240603
(
2016
).
31.
L.
Zarfaty
and
B.
Meerson
, “
Statistics of large currents in the Kipnis-Marchioro-Presutti model in a ring geometry
,”
J. Stat. Mech.
2016
,
P033304
(
2016
).
32.
O.
Tsobgni Nyawo
and
H.
Touchette
, “
A minimal model of dynamical phase transition
,”
Europhys. Lett.
116
,
50009
(
2016
).
33.
D.
Manzano
and
E.
Kyoseva
, “
An atomic symmetry-controlled thermal switch
,”
Sci. Rep.
6
,
31161
(
2016
).
34.
A.
Lazarescu
, “
Generic dynamical phase transition in one-dimensional bulk-driven lattice gases with exclusion
,”
J. Phys. A
50
,
254004
(
2017
).
35.
K.
Brandner
,
V. F.
Maisi
,
J. P.
Pekola
,
J. P.
Garrahan
, and
C.
Flindt
, “
Experimental determination of dynamical Lee-Yang zeros
,”
Phys. Rev. Lett.
118
,
180601
(
2017
).
36.
D.
Karevski
and
G. M.
Schütz
, “
Conformal invariance in driven diffusive systems at high currents
,”
Phys. Rev. Lett.
118
,
030601
(
2017
).
37.
F.
Carollo
,
J. P.
Garrahan
,
I.
Lesanovsky
, and
C.
Pérez-Espigares
, “
Fluctuating hydrodynamics, current fluctuations, and hyperuniformity in boundary-driven open quantum chains
,”
Phys. Rev. E
96
,
052118
(
2017
).
38.
Y.
Baek
,
Y.
Kafri
, and
V.
Lecomte
, “
Dynamical symmetry breaking and phase transitions in driven diffusive systems
,”
Phys. Rev. Lett.
118
,
030604
(
2017
).
39.
N.
Tizón-Escamilla
,
C.
Pérez-Espigares
,
P. L.
Garrido
, and
P. I.
Hurtado
, “
Order and symmetry-breaking in the fluctuations of driven systems
,”
Phys. Rev. Lett.
119
,
090602
(
2017
).
40.
O.
Shpielberg
, “
Geometrical interpretation of dynamical phase transitions in boundary-driven systems
,”
Phys. Rev. E
96
,
062108
(
2017
).
41.
R.
Pinchaipat
,
M.
Campo
,
F.
Turci
,
J.
Hallett
,
T.
Speck
, and
C. P.
Royall
, “
Experimental evidence for a structural-dynamical transition in trajectory space
,”
Phys. Rev. Lett.
119
,
028004
(
2017
).
42.
B.
Abou
,
R.
Colin
,
V.
Lecomte
,
E.
Pitard
, and
F.
van Wijland
, “
Activity statistics in a colloidal glass former: Experimental evidence for a dynamical transition
,”
J. Chem. Phys.
148
,
164502
(
2018
).
43.
D.
Manzano
and
P. I.
Hurtado
, “
Harnessing symmetry to control quantum transport
,”
Adv. Phys.
67
,
1
(
2018
).
44.
Y.
Baek
,
Y.
Kafri
, and
V.
Lecomte
, “
Dynamical phase transitions in the current distribution of driven diffusive channels
,”
J. Phys. A
51
,
105001
(
2018
).
45.
O.
Shpielberg
,
T.
Nemoto
, and
J.
Caetano
, “
Universality in dynamical phase transitions of diffusive systems
,”
Phys. Rev. E
98
,
052116
(
2018
).
46.
C.
Pérez-Espigares
,
I.
Lesanovsky
,
J. P.
Garrahan
, and
R.
Gutiérrez
, “
Glassy dynamics due to a trajectory phase transition in dissipative Rydberg gases
,”
Phys. Rev. A
98
,
021804
(
2018
).
47.
C.
Pérez-Espigares
,
F.
Carollo
,
J. P.
Garrahan
, and
P. I.
Hurtado
, “
Dynamical criticality in open systems: Nonperturbative physics, microscopic origin, and direct observation
,”
Phys. Rev. E
98
,
060102
(
2018
).
48.
P.
Chleboun
,
S.
Grosskinsky
, and
A.
Pizzoferrato
, “
Current large deviations for partially asymmetric particle systems on a ring
,”
J. Phys. A
51
,
405001
(
2018
).
49.
K.
Klymko
,
P. L.
Geissler
,
J. P.
Garrahan
, and
S.
Whitelam
, “
Rare behavior of growth processes via umbrella sampling of trajectories
,”
Phys. Rev. E
97
,
032123
(
2018
).
50.
S.
Whitelam
, “
Large deviations in the presence of cooperativity and slow dynamics
,”
Phys. Rev. E
97
,
062109
(
2018
).
51.
H.
Vroylandt
and
G.
Verley
, “
Non-equivalence of dynamical ensembles and emergent non-ergodicity
,”
J. Stat. Phys.
174
,
404
(
2018
).
52.
P.
Rotondo
,
J.
Minář
,
J. P.
Garrahan
,
I.
Lesanovsky
, and
M.
Marcuzzi
, “
Singularities in large deviations of work in quantum quenches
,”
Phys. Rev. B
98
,
184303
(
2018
).
53.
B.
Buča
,
T.
Prosen
,
J. P.
Garrahan
, and
M.
Vanicat
, “Exact large deviation statistics and trajectory phase transition of a deterministic boundary driven cellular automation,” e-print arXiv:1901.00845 (2019).
54.
B.
Doyon
and
J.
Myers
, “Fluctuations in ballistic transport from Euler hydrodynamics,” e-print arXiv:1902.00320 (2019).
55.
F.
Carollo
,
J. P.
Garrahan
, and
I.
Lesanovsky
, “
Current fluctuations in boundary-driven quantum spin chains
,”
Phys. Rev. B
98
,
094301
(
2018
).
56.
C.-N.
Yang
and
T.-D.
Lee
, “
Statistical theory of equations of state and phase transitions. I. Theory of condensation
,”
Phys. Rev.
87
,
404
(
1952
).
57.
P. F.
Arndt
, “
Yang-Lee theory for a nonequilibrium phase transition
,”
Phys. Rev. Lett.
84
,
814
(
2000
).
58.
R. A.
Blythe
and
M. R.
Evans
, “
Lee-Yang zeros and phase transitions in nonequilibrium steady states
,”
Phys. Rev. Lett.
89
,
080601
(
2002
).
59.
S. M.
Dammer
,
S. R.
Dahmen
, and
H.
Hinrichsen
, “
Yang-Lee zeros for a nonequilibrium phase transition
,”
J. Phys. A
35
,
4527
(
2002
).
60.
R. A.
Blythe
and
M. R.
Evans
, “
The Lee-Yang theory of equilibrium and nonequilibrium phase transitions
,”
Braz. J. Phys.
33
,
464
(
2003
).
61.
C.
Flindt
and
J. P.
Garrahan
, “
Trajectory phase transitions, Lee-Yang zeros, and high-order cumulants in full counting statistics
,”
Phys. Rev. Lett.
110
,
050601
(
2013
).
62.
J. M.
Hickey
,
C.
Flindt
, and
J. P.
Garrahan
, “
Intermittency and dynamical Lee-Yang zeros of open quantum systems
,”
Phys. Rev. E
90
,
062128
(
2014
).
63.
L.
Bertini
,
A.
De Sole
,
D.
Gabrielli
,
G.
Jona-Lasinio
, and
C.
Landim
, “
Macroscopic fluctuation theory
,”
Rev. Mod. Phys.
87
,
593
636
(
2015
).
64.
B.
Derrida
, “
Non-equilibrium steady states: Fluctuations and large deviations of the density and of the current
,”
J. Stat. Mech.
2007
,
P07023
(
2007
). SEP
65.
J.
Barré
,
C.
Bernardin
, and
R.
Chetrite
, “
Density large deviations for multidimensional stochastic hyperbolic conservation laws
,”
J. Stat. Phys.
170
,
466
(
2018
).
66.
C.
Pérez-Espigares
,
F.
Redig
, and
C.
Giardinà
, “
Spatial fluctuation theorem
,”
J. Phys. A
48
,
35FT01
(
2015
).
67.
C.
Pérez-Espigares
,
P. L.
Garrido
, and
P. I.
Hurtado
, “
Weak additivity principle for current statistics in d-dimensions
,”
Phys. Rev. E
93
,
040103(R)
(
2016
).
68.
N.
Tizón-Escamilla
,
P. I.
Hurtado
, and
P. L.
Garrido
, “
Structure of the optimal path to a fluctuation
,”
Phys. Rev. E
95
,
002100
(
2017
).
69.
J. L.
Doob
, “
Conditional brownian motion and the boundary limits of harmonic functions
,”
Bull. Soc. Math. Fr.
85
,
431
(
1957
).
70.
R. L.
Jack
and
P.
Sollich
, “
Large deviations and ensembles of trajectories in stochastic models
,”
Prog. Theor. Phys. Suppl.
184
,
304
317
(
2010
).
71.
R.
Chetrite
and
H.
Touchette
, “
Variational and optimal control representations of conditioned and driven processes
,”
J. Stat. Mech.
2015
,
P12001
(
2015
).
72.
R.
Chetrite
and
H.
Touchette
, “
Nonequilibrium Markov processes conditioned on large deviations
,”
Ann. Henri Poincare
16
,
2005
(
2015
).
73.
F.
Carollo
,
J. P.
Garrahan
,
I.
Lesanovsky
, and
C.
Pérez-Espigares
, “
Making rare events typical in Markovian open quantum systems
,”
Phys. Rev. A
98
,
010103
(
2018
).
74.
C.
Giardinà
,
J.
Kurchan
, and
L.
Peliti
, “
Direct evaluation of large-deviation functions
,”
Phys. Rev. Lett.
96
,
120603
(
2006
).
75.
V.
Lecomte
and
J.
Tailleur
, “
A numerical approach to large deviations in continuous time
,”
J. Stat. Mech.
2007
,
P03004
(
2007
).
76.
J.
Tailleur
and
V.
Lecomte
, “
Simulation of large deviation functions using population dynamics
,”
Model. Simul. New Mater.
1091
,
212
219
(
2009
).
77.
C.
Giardinà
,
J.
Kurchan
,
V.
Lecomte
, and
J.
Tailleur
, “
Simulating rare events in dynamical processes
,”
J. Stat. Phys.
145
,
787
811
(
2011
).
78.
J. B.
Anderson
, “
A random-walk simulation of the Schrödinger equation: H3+
,”
J. Chem. Phys.
63
,
1499
(
1975
).
79.
C.
Kipnis
,
C.
Marchioro
, and
E.
Presutti
, “
Heat-flow in an exactly solvable model
,”
J. Stat. Phys.
27
,
65
74
(
1982
).
80.
B.
Derrida
, “
An exactly soluble non-equilibrium system: The asymmetric simple exclusion process
,”
Phys. Rep.
301
,
65
83
(
1998
).
81.
T.
Bodineau
and
B.
Derrida
, “
Current fluctuations in nonequilibrium diffusive systems: An additivity principle
,”
Phys. Rev. Lett.
92
,
180601
(
2004
).
82.
P. I.
Hurtado
and
P. L.
Garrido
, “
Test of the additivity principle for current fluctuations in a model of heat conduction
,”
Phys. Rev. Lett.
102
,
250601
(
2009
).
83.
C.
Dellago
,
P. G.
Bolhuis
, and
P. L.
Geissler
, “
Transition path sampling
,”
Adv. Chem. Phys.
123
,
1
(
2002
).
84.
P. G.
Bolhuis
,
D.
Chandler
,
C.
Dellago
, and
P. L.
Geissler
, “
Transition path sampling: Throwing ropes over rough mountain passes, in the dark
,”
Annu. Rev. Phys. Chem.
53
,
291
(
2002
).
85.
M.
Gorissen
,
J.
Hooyberghs
, and
C.
Vanderzande
, “
Density-matrix renormalization-group study of current and activity fluctuations near nonequilibrium phase transitions
,”
Phys. Rev. E
79
,
020101
(
2009
).
86.
M.
Gorissen
and
C.
Vanderzande
, “
Current fluctuations in the weakly asymmetric exclusion process with open boundaries
,”
Phys. Rev. E
86
,
051114
(
2012
).
87.
M.
Gorissen
,
A.
Lazarescu
,
K.
Mallick
, and
C.
Vanderzande
, “
Exact current statistics of the asymmetric simple exclusion process with open boundaries
,”
Phys. Rev. Lett.
109
,
170601
(
2012
).
88.
P. I.
Hurtado
and
P. L.
Garrido
, “
Current fluctuations and statistics during a large deviation event in an exactly solvable transport model
,”
J. Stat. Mech.
2009
,
P02032
(
2009
).
89.
P. I.
Hurtado
and
P. L.
Garrido
, “
Large fluctuations of the macroscopic current in diffusive systems: A numerical test of the additivity principle
,”
Phys. Rev. E
81
,
041102
(
2010
).
90.
D.
Sornette
, Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools, 2nd ed., Springer Series in Synergetics (Springer, 2006).
91.
T.
Nemoto
,
E.
Guevara Hidalgo
, and
V.
Lecomte
, “
Finite-time and finite-size scalings in the evaluation of large-deviation functions: Analytical study using a birth-death process
,”
Phys. Rev. E
95
,
012102
(
2017
).
92.
E.
Guevara Hidalgo
,
T.
Nemoto
, and
V.
Lecomte
, “
Finite-time and finite-size scalings in the evaluation of large-deviation functions: Numerical approach in continuous time
,”
Phys. Rev. E
95
,
062134
(
2017
).
93.
L.
Angeli
,
S.
Grosskinsky
,
A. M
Johansen
, and
A.
Pizzoferrato
, “Rare event simulation for stochastic dynamics in continuous time,”
J. Stat. Phys.
(published online
2019
).
94.
L.
Angeli
,
S.
Grosskinsky
, and
A. M.
Johansen
, “Limit theorems for cloning algorithms,” e-print arXiv:1902.00509 (2019).
95.
T.
Nemoto
,
F.
Bouchet
,
R. L.
Jack
, and
V.
Lecomte
, “
Population dynamics method with a multi-canonical feedback control
,”
Phys. Rev. E
93
,
062123
(
2016
).
96.
T.
Nemoto
,
R. L.
Jack
, and
V.
Lecomte
, “
Finite-size scaling of a first-order dynamical phase transition: Adaptive population dynamics and an effective model
,”
Phys. Rev. Lett.
118
,
115702
(
2017
).
97.
U.
Ray
,
G.
Kin-Lic Chan
, and
D. T.
Limmer
, “
Exact fluctuations of nonequilibrium steady states from approximate auxiliary dynamics
,”
Phys. Rev. Lett.
120
,
210602
(
2018
).
98.
T.
Oakes
,
S.
Powell
,
C.
Castelnovo
,
A.
Lamacraft
, and
J. P.
Garrahan
, “
Phases of quantum dimers from ensembles of classical stochastic trajectories
,”
Phys. Rev. B
98
,
064302
(
2018
).
99.
T.
Brewer
,
S. R.
Clark
,
R.
Bradford
, and
R. L.
Jack
, “
Efficient characterisation of large deviations using population dynamics
,”
J. Stat. Mech.
2018
,
053204
(
2018
).
100.
M.
Cavallaro
and
R. J.
Harris
, “
A framework for the direct evaluation of large deviations in non-markovian processes
,”
J. Phys. A
49
,
47LT02
(
2016
).
101.
G.
Ferré
and
H.
Touchette
, “
Adaptive sampling of large deviations
,”
J. Stat. Phys.
172
,
1525
1544
(
2018
).
102.
F.
Bonetto
,
J. L.
Lebowitz
, and
L.
Rey-Bellet
, “Fourier’s law: A challenge for theorists,” in Mathematical Physics (Imperial College Press, London, 2000), pp. 128–150.
103.
G.
Carinci
,
C.
Giardinà
,
C.
Giberti
, and
F.
Redig
, “
Duality for stochastic models of transport
,”
J. Stat. Phys.
152
,
657
697
(
2013
).
104.
A.
Prados
,
A.
Lasanta
, and
P. I.
Hurtado
, “
Nonlinear driven diffusive systems with dissipation: Fluctuating hydrodynamics
,”
Phys. Rev. E
86
,
031134
(
2012
).
105.
J.
Gärtner
, “
Convergence towards Burger’s equation and propagation of chaos for weakly asymmetric exclusion processes
,”
Stoch. Proc. Appl.
27
,
233
(
1987
).
106.
A.
De Masi
,
E.
Presutti
, and
E.
Scacciatelli
, “
The weakly asymmetric simple exclusion process
,”
Ann. Inst. Henri Poincaré
25
,
1
(
1989
).
107.
H.
Spohn
, Large Scale Dynamics of Interacting Particles, Theoretical and Mathematical Physics (Springer, Berlin, 2012).
108.
K.-D. N. T.
Lam
,
J.
Kurchan
, and
D.
Levine
, “
Order in extremal trajectories
,”
J. Stat. Phys.
137
,
1079
1093
(
2009
).
You do not currently have access to this content.