Extreme geophysical events are of crucial relevance to our daily life: they threaten human lives and cause property damage. To assess the risk and reduce losses, we need to model and probabilistically predict these events. Parametrizations are computational tools used in the Earth system models, which are aimed at reproducing the impact of unresolved scales on resolved scales. The performance of parametrizations has usually been examined on typical events rather than on extreme events. In this paper, we consider a modified version of the two-level Lorenz’96 model and investigate how two parametrizations of the fast degrees of freedom perform in terms of the representation of extreme events. One parametrization is constructed following Wilks [Q. J. R. Meteorol. Soc. 131, 389–407 (2005)] and is constructed through an empirical fitting procedure; the other parametrization is constructed through the statistical mechanical approach proposed by Wouters and Lucarini [J. Stat. Mech. Theory Exp. 2012, P03003 (2012); J. Stat. Phys. 151, 850–860 (2013)]. The two strategies show different advantages and disadvantages. We discover that the agreement between parametrized models and true model is in general worse when looking at extremes rather than at the bulk of the statistics. The results suggest that stochastic parametrizations should be accurately and specifically tested against their performance on extreme events, as usual optimization procedures might neglect them.

1.
P.
Collet
, “
Statistics of closest return for some non-uniformly hyperbolic systems
,”
Ergodic Theory Dynam. Syst.
21
,
401
420
(
2001
).
2.
A. C. M.
Freitas
,
J. M.
Freitas
, and
M.
Todd
, “
Hitting time statistics and extreme value theory
,”
Probab. Theory Relat. Fields
147
,
675
710
(
2010
).
3.
E.
Lorenz
, “Predictability: A problem partly solved,” in Seminar on Predictability, 4–8 September 1995 (ECMWF, Shinfield Park, Reading, 1995), Vol. 1, pp. 1–18.
4.
H. M.
Arnold
,
I. M.
Moroz
, and
T. N.
Palmer
, “
Stochastic parametrizations and model uncertainty in the Lorenz’96 system
,”
Phil. Trans. R. Soc. Lond. A
371
,
20110479
(
2013
).
5.
H. M.
Christensen
,
I. M.
Moroz
, and
T. N.
Palmer
, “
Simulating weather regimes: Impact of stochastic and perturbed parameter schemes in a simple atmospheric model
,”
Clim. Dyn.
44
,
2195
2214
(
2015
).
6.
J.
Harlim
, “Model error in data assimilation,” in Nonlinear and Stochastic Climate Dynamics, edited by C. L. E. Franzke and T. J. O’Kane (Cambridge University Press, Cambridge, 2017), Chap. 10, pp. 276–317.
7.
G.
Vissio
and
V.
Lucarini
, “
A proof of concept for scale-adaptive parametrizations: The case of the Lorenz’96 model
,”
Q. J. R. Meteorol. Soc.
144
,
63
75
(
2018
).
8.
C.
Franzke
, “
Predictability of extreme events in a nonlinear stochastic-dynamical model
,”
Phys. Rev. E
85
,
031134
(
2012
).
9.
V. M.
Gálfi
,
T.
Bódai
, and
V.
Lucarini
, “
Convergence of extreme value statistics in a two-layer quasi-geostrophic atmospheric model
,”
Complexity
2017
,
5340858
(
2017
).
10.
T.
Bódai
, “Extreme value analysis in dynamical systems: Two case studies,” in Nonlinear and Stochastic Climate Dynamics, edited by C. L. E. Franzke and T. J. O’Kane (Cambridge University Press, Cambridge, 2017), Chap. 14, pp. 392–429.
11.
A.
Neumaier
and
T.
Schneider
, “
Estimation of parameters and eigenmodes of multivariate autoregressive models
,”
ACM Trans. Math. Softw. (TOMS)
27
,
27
57
(
2001
).
12.
D. S.
Wilks
, “
Effects of stochastic parametrizations in the Lorenz ’96 system
,”
Q. J. R. Meteorol. Soc.
131
,
389
407
(
2005
).
13.
D.
Ruelle
, “
Differentiation of SRB states
,”
Commun. Math. Phys.
187
,
227
241
(
1997
).
14.
D.
Ruelle
, “
A review of linear response theory for general differentiable dynamical systems
,”
Nonlinearity
22
,
855
(
2009
).
15.
H.
Mori
,
H.
Fujisaka
, and
H.
Shigematsu
, “
A new expansion of the master equation
,”
Prog. Theor. Phys.
51
,
109
122
(
1974
).
16.
R.
Zwanzig
, “
Ensemble method in the theory of irreversibility
,”
J. Chem. Phys.
33
,
1338
1341
(
1960
).
17.
R.
Zwanzig
, “
Memory effects in irreversible thermodynamics
,”
Phys. Rev.
124
,
983
(
1961
).
18.
V.
Lucarini
,
D.
Faranda
,
J. M.
Freitas
,
M.
Holland
,
T.
Kuna
,
M.
Nicol
, and
S.
Vaienti
,
Extremes and Recurrence in Dynamical Systems
(
John Wiley & Sons
,
2016
).
19.
V.
Lucarini
,
D.
Faranda
,
J.
Wouters
, and
T.
Kuna
, “
Towards a general theory of extremes for observables of chaotic dynamical systems
,”
J. Stat. Phys.
154
,
723
750
(
2014
).
20.
J. L.
Kaplan
and
J. A.
Yorke
, “Chaotic behavior of multidimensional difference equations,” in Functional Differential Equations and Approximation of Fixed Points (Springer, 1979), pp. 204–227.
21.
E.
Gilleland
and
R. W.
Katz
, “
extRemes 2.0: An extreme value analysis package in R
,”
J. Stat. Softw.
72
,
1
39
(
2016
).
22.
J. R.
Hosking
, “
L-moments: Analysis and estimation of distributions using linear combinations of order statistics
,”
J. R. Stat. Soc. Ser. B Methodol.
52
,
105
124
(
1990
), http://www.jstor.org/stable/2345653.
23.
T.
Palmer
and
P.
Williams
, “
Introduction. Stochastic physics and climate modelling
,”
Phil. Trans. R. Soc. A
366
,
2419
2425
(
2008
).
24.
C. L. E.
Franzke
,
T.
O’Kane
,
J.
Berner
,
P.
Williams
, and
V.
Lucarini
, “
Stochastic climate theory and modelling
,”
WIREs Clim. Change
6
,
63
78
(
2015
).
25.
J.
Berner
,
U.
Achatz
,
L.
Batte
,
L.
Bengtsson
,
A.
de la Cámara
,
H. M.
Christensen
,
M.
Colangeli
,
D. R. B.
Coleman
,
D.
Crommelin
,
S. I.
Dolaptchiev
,
C. L. E.
Franzke
,
P.
Friederichs
,
P.
Imkeller
,
H.
Järvinen
,
S.
Juricke
,
V.
Kitsios
,
F.
Lott
,
V.
Lucarini
,
S.
Mahajan
,
T. N.
Palmer
,
C.
Penland
,
M.
Sakradzija
,
J.-S.
von Storch
,
A.
Weisheimer
,
M.
Weniger
,
P. D.
Williams
, and
J.-I.
Yano
, “
Stochastic parameterization: Toward a new view of weather and climate models
,”
Bull. Am. Meteorol. Soc.
98
,
565
588
(
2017
).
26.
R. A.
Fisher
and
L. H. C.
Tippett
, “
Limiting forms of the frequency distribution of the largest or smallest member of a sample
,”
Math. Proc. Camb. Philos. Soc.
24
,
180
190
(
1928
).
27.
B.
Gnedenko
, “
Sur la distribution limite du terme maximum d’une serie aleatoire
,”
Ann. Math.
44
,
423
453
(
1943
).
28.
A. A.
Balkema
and
L.
de Haan
, “
Residual life time at great age
,”
Ann. Probab.
2
,
792
804
(
1974
).
29.
J.
Pickands
, “
Statistical inference using extreme order statistics
,”
Ann. Stat.
3
,
119
131
(
1975
).
30.
P.
Embrechts
,
C.
Klüppelberg
, and
T.
Mikosch
,
Modelling Extremal Events for Insurance and Finance
(
Springer Verlag
,
Berlin
,
1997
).
31.
S.
Coles
,
An Introduction to Statistical Modeling of Extreme Values
(
Springer
,
2001
).
32.
M. P.
Holland
,
R.
Vitolo
,
P.
Rabassa
,
A. E.
Sterk
, and
H. W.
Broer
, “
Extreme value laws in dynamical systems under physical observables
,”
Physica D
241
,
497
513
(
2012
).
33.
J.
Wouters
and
V.
Lucarini
, “
Disentangling multi-level systems: Averaging, correlations and memory
,”
J. Stat. Mech. Theory Exp.
2012
,
P03003
(
2012
).
34.
J.
Wouters
and
V.
Lucarini
, “
Multi-level dynamical systems: Connecting the ruelle response theory and the Mori-Zwanzig approach
,”
J. Stat. Phys.
151
,
850
860
(
2013
).
35.
J.
Wouters
and
V.
Lucarini
, “Parametrization of cross-scale interaction in multiscale systems,” in Climate Change: Multidecadal and Beyond (
World Scientific
,
2016
), Chap. 4, pp. 67–80.
36.
M. D.
Chekroun
,
H.
Liu
, and
S.
Wang
,
Approximation of Stochastic Invariant Manifolds: Stochastic Manifolds for Nonlinear SPDEs I
(
Springer
,
2015
).
37.
C. L. E.
Franzke
, “
Extremes in dynamic-stochastic systems
,”
Chaos
27
,
012101
(
2017
).
38.
K.
Hasselmann
, “
Stochastic climate models Part I. Theory
,”
Tellus
28
,
473
485
(
1976
).
You do not currently have access to this content.