The steady state motion visual evoked potential (SSMVEP)-based brain computer interface (BCI), which incorporates the motion perception capabilities of the human visual system to alleviate the negative effects caused by strong visual stimulation from steady-state VEP, has attracted a great deal of attention. In this paper, we design a SSMVEP-based experiment by Newton's ring paradigm. Then, we use the canonical correlation analysis and Support Vector Machines to classify SSMVEP signals for the SSMVEP-based electroencephalography (EEG) signal detection. We find that the classification accuracy of different subjects under fatigue state is much lower than that in the normal state. To probe into this, we develop a multiplex limited penetrable horizontal visibility graph method, which enables to infer a brain network from 62-channel EEG signals. Subsequently, we analyze the variation of the average weighted clustering coefficient and the weighted global efficiency corresponding to these two brain states and find that both network measures are lower under fatigue state. The results suggest that the associations and information transfer efficiency among different brain regions become weaker when the brain state changes from normal to fatigue, which provide new insights into the explanations for the reduced classification accuracy. The promising classification results and the findings render the proposed methods particularly useful for analyzing EEG recordings from SSMVEP-based BCI system.

1.
J. R.
Wolpaw
,
N.
Birbaumer
,
W. J.
Heetderks
,
D. J.
McFarland
,
P. H.
Peckham
,
G.
Schalk
,
E.
Donchin
,
L. A.
Quatrano
,
C. J.
Robinson
, and
T. M.
Vaughan
, “
Brain-computer interface technology: A review of the first international meeting
,”
IEEE Trans. Rehabil. Eng.
8
(
2
),
164
173
(
2000
).
2.
C.
Neuper
,
G. R.
Müller
,
A.
Kübler
,
N.
Birbaumer
, and
G.
Pfurtscheller
, “
Clinical application of an EEG-based brain-computer interface: A case study in a patient with severe motor impairment
,”
Clin. Neurophysiol.
114
(
3
),
399
409
(
2003
).
3.
M. A.
Lopez-Gordo
,
E.
Fernandez
,
S.
Romero
,
F.
Pelayo
, and
A.
Prieto
, “
An auditory brain-computer interface evoked by natural speech
,”
J. Neural Eng.
9
(
3
),
036013
(
2012
).
4.
L. A.
Moctezuma
,
A. A.
Torres-García
,
L.
Villaseñor-Pineda
, and
M.
Carrillo
, “
Subjects identification using EEG-recorded imagined speech
,”
Expert Syst. Appl.
118
,
201
208
(
2019
).
5.
K. K.
Ang
,
K. S. G.
Chua
,
K. S.
Phua
,
C. C.
Wang
,
Z. Y.
Chin
,
C. W. K.
Kuah
,
W.
Low
, and
C. T.
Guan
, “
A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke
,”
Clin. EEG Neurosci.
46
(
4
),
310
320
(
2015
).
6.
S.
Nehamkin
,
M.
Windom
, and
T. U.
Syed
, “
Visual evoked potentials
,”
Am. J. Electroneurod. Technol.
48
(
4
),
233
48
(
2008
).
7.
N.
Birbaumer
, “
Slow cortical potentials: Plasticity, operant control, and behavioral effects
,”
Neuroscience
5
(
2
),
74
78
(
1999
).
8.
B. K.
Bonala
and
B. H.
Jansen
, “
A computational model for generation of the P300 evoked potential component
,”
J. Integr. Neurosci.
11
(
3
),
277
294
(
2012
).
9.
G.
Pfurtscheller
and
C.
Neuper
, “
Motor imagery and direct brain-computer communication
,”
IEEE Proc.
89
(
7
),
1123
1134
(
2001
).
10.
A.
Kubler
,
F.
Nijboer
,
J.
Mellinger
,
T. M.
Vaughan
,
H.
Pawelzik
,
G.
Schalk
,
D. J.
McFarland
,
N.
Birbaumer
, and
J. R.
Wolpaw
, “
Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface
,”
Neurology
64
(
10
),
1775
1777
(
2005
).
11.
B.
Bromm
, “
Human brain electrophysiology. Evoked potentials and evoked magnetic fields in science and medicine
,”
Pain
39
(
3
),
371
372
(
1989
).
12.
W. G.
Sannita
,
L.
Lopez
,
C.
Piras
, and
G.
Di Bon
, “
Scalp-recorded oscillatory potentials evoked by transient pattern-reversal visual stimulation in man
,”
Clin. Neurophysiol.
96
(
3
),
206
218
(
1995
).
13.
H.
Strasburger
,
W.
Scheidler
, and
I.
Rentschler
, “
Amplitude and phase characteristics of the steady-state visual evoked potential
,”
Appl. Opt.
27
(
6
),
1069
88
(
1988
).
14.
S.
Parini
,
L.
Maggi
,
A. C.
Turconi
, and
G.
Andreoni
, “
A robust and self-paced BCI system based on a four class SSVEP paradigm: Algorithms and protocols for a high-transfer-rate direct brain communication
,”
Comput. Intell. Neurosci.
2009
,
864564
(
2009
).
15.
Z. H.
Wu
,
Y. X.
Lai
,
Y.
Xia
,
D.
Wu
, and
D. Z.
Yao
, “
Stimulator selection in SSVEP-based BCI
,”
Med. Eng. Phys.
30
(
8
),
1079
1088
(
2008
).
16.
D. H.
Zhu
,
J.
Bieger
,
G.
Garcia Molina
, and
R. M.
Aarts
, “
A survey of stimulation methods used in SSVEP-based BCIs
,”
Comput. Intell. Neurosci.
2010
,
702357
(
2010
).
17.
S.
Ajami
,
A.
Mahnam
, and
V.
Abootalebi
, “
An adaptive SSVEP-based brain-computer interface to compensate fatigue-induced decline of performance in practical application
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
26
(
11
),
2200
2209
(
2018
).
18.
B.
Hong
,
F.
Guo
,
T.
Liu
,
X. R.
Gao
, and
S. K.
Gao
, “
N200-speller using motion-onset visual response
,”
Clin. Neurophysiol.
120
(
9
),
1658
1666
(
2009
).
19.
J.
Xie
,
G. H.
Xu
,
J.
Wang
,
F.
Zhang
, and
Y. Z.
Zhang
, “
Steady-state motion visual evoked potentials produced by oscillating Newton’s rings: Implications for brain-computer interfaces
,”
PLoS One
7
(
6
),
e39707
(
2012
).
20.
W. Q.
Yan
,
G. H.
Xu
,
J.
Xie
,
M.
Li
, and
Z. Y.
Dan
, “
Four novel motion paradigms based on steady-state motion visual evoked potential
,”
IEEE T. Bio. Med. Eng.
65
(
8
),
1696
1704
(
2018
).
21.
J.
Zhang
and
M.
Small
, “
Complex network from pseudoperiodic time series: Topology versus dynamics
,”
Phys. Rev. Lett.
96
(
23
),
238701
(
2006
).
22.
X. K.
Xu
,
J.
Zhang
, and
M.
Small
, “
Superfamily phenomena and motifs of networks induced from time series
,”
Proc. Natl. Acad. Sci.
105
(
50
),
19601
19605
(
2008
).
23.
J. F.
Donges
,
R. V.
Donner
,
M. H.
Trauth
,
N.
Marwan
,
H. J.
Schellnhuber
, and
J.
Kurths
, “
Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution
,”
Proc. Natl. Acad. Sci.
108
(
51
),
20422
20427
(
2011
).
24.
J. H.
Feldhoff
,
R. V.
Donner
,
J. F.
Donges
,
N.
Marwan
, and
J.
Kurths
, “
Geometric detection of coupling directions by means of inter-system recurrence networks
,”
Phys. Lett. A
376
(
46
),
3504
3513
(
2012
).
25.
R. X.
Xiang
,
J.
Zhang
,
X. K.
Xu
, and
M.
Small
, “
Multiscale characterization of recurrence-based phase space networks constructed from time series
,”
Chaos
22
(
1
),
013107
(
2012
).
26.
Y.
Zou
,
R. V.
Donner
,
N.
Marwan
,
J. F.
Donges
, and
J.
Kurths
, “
Complex network approaches to nonlinear time series analysis
,”
Phys. Rep.
787
,
1
97
(
2019
).
27.
N.
Marwan
,
J. F.
Donges
,
Y.
Zou
,
R. V.
Donner
, and
J.
Kurths
, “
Complex network approach for recurrence analysis of time series
,”
Phys. Lett. A
373
(
46
),
4246
4254
(
2009
).
28.
Z. K.
Gao
,
M.
Small
, and
J.
Kurths
, “
Complex network analysis of time series
,”
Europhys. Lett.
116
(
5
),
50001
(
2016
).
29.
J.
Zhang
,
J. F.
Sun
,
X. D.
Luo
,
K.
Zhang
,
T.
Nakamura
, and
M.
Small
, “
Characterizing pseudoperiodic time series through the complex network approach
,”
Physica D
237
(
22
),
2856
2865
(
2008
).
30.
W. D.
Dang
,
Z. K.
Gao
,
L. H.
Hou
,
D. M.
Lv
,
S. M.
Qiu
, and
G. R.
Chen
, “
A novel deep learning framework for industrial multiphase flow characterization
,” in
IEEE Transactions on Industrial Informatics
(
IEEE
,
2019)
.
31.
Z. K.
Gao
,
S. S.
Zhang
,
W. D.
Dang
,
S.
Li
, and
Q.
Cai
, “
Multilayer network from multivariate time series for characterizing nonlinear flow behavior
,”
Int. J. Bifurc. Chaos
27
(
4
),
1750059
(
2017
).
32.
Z. K.
Gao
,
W. D.
Dang
,
C. X.
Mu
,
Y. X.
Yang
,
S.
Li
, and
C.
Grebogi
, “
A novel multiplex network-based sensor information fusion model and its application to industrial multiphase flow system
,”
IEEE Trans. Industr. Inform.
14
(
9
),
3982
3988
(
2018
).
33.
Z. K.
Gao
,
K. L.
Zhang
,
W. D.
Dang
,
Y. X.
Yang
,
Z. B.
Wang
,
H. B.
Duan
, and
G. R.
Chen
, “
An adaptive optimal-kernel time-frequency representation-based complex network method for characterizing fatigued behavior using the SSVEP-based BCI system
,”
Knowl. Based Syst.
152
,
163
171
(
2018
).
34.
Z. K.
Gao
,
S.
Li
,
Q.
Cai
,
W. D.
Dang
,
Y. X.
Yang
,
C. X.
Mu
, and
P.
Hui
, “
Relative wavelet entropy complex network for improving EEG-based fatigue driving classication
,”
IEEE Trans. Instrum. Meas.
68
(
7
),
2491
2497
(
2018
).
35.
Z. K.
Gao
,
Q.
Cai
,
Y. X.
Yang
,
N.
Dong
, and
S. S.
Zhang
, “
Visibility graph from adaptive optimal kernel time-frequency representation for classification of epileptiform EEG
,”
Int. J. Neur. Syst.
27
(
4
),
1750005
(
2017
).
36.
N.
Boers
,
B.
Goswami
,
A.
Rheinwalt
,
B.
Bookhagen
,
B.
Hoskins
, and
J.
Kurths
, “
Complex networks reveal global pattern of extreme-rainfall teleconnections
,”
Nature
566
(
7744
),
373
377
(
2019
).
37.
N.
Marwan
and
J.
Kurths
, “
Complex network based techniques to identify extreme events and (sudden) transitions in spatio-temporal systems
,”
Chaos
25
(
9
),
097609
(
2015
).
38.
E.
Bullmore
and
O.
Sporns
, “
Complex brain networks: Graph theoretical analysis of structural and functional systems
,”
Nat. Rev. Neurosci.
10
(
3
),
186
98
(
2009
).
39.
L. Y.
Cui
,
S.
Kumara
, and
R.
Albert
, “
Complex networks: An engineering view
,”
IEEE Circ. Syst. Mag.
10
(
3
),
10
25
(
2010
).
40.
G.
Yan
,
J.
Ren
,
Y. C.
Lai
,
C. H.
Lai
, and
B. W.
Li
, “
Controlling complex networks: How much energy is needed?
,”
Phys. Rev. Lett.
108
(
21
),
218703
(
2012
).
41.
E. T.
Bullmore
and
O.
Sporns
, “
Complex brain networks: Graph theoretical analysis of structural and functional systems
,”
Nat. Rev. Neurosci.
10
(
3
),
186
198
(
2009
).
42.
W. Z.
Kong
,
W. C.
Lin
,
F.
Babiloni
,
S. Q.
Hu
, and
G.
Borghini
, “
Investigating driver fatigue versus alertness using the granger causality network
,”
Sensors
15
(
8
),
19181
19198
(
2015
).
43.
S.
Supriya
,
S.
Siuly
,
H.
Wang
,
J. L.
Cao
, and
Y. C.
Zhang
, “
Weighted visibility graph with complex network features in the detection of epilepsy
,”
IEEE Access
4
,
6554
6566
(
2016
).
44.
L.
Lacasa
,
V.
Nicosia
, and
V.
Latora
, “
Network structure of multivariate time series
,”
Sci. Rep.
5
,
15508
(
2015
).
45.
L.
Lacasa
and
R.
Toral
, “
Description of stochastic and chaotic series using visibility graphs
,”
Phys. Rev. E
82
(
3
),
036120
(
2010
).
46.
Z. K.
Gao
,
Q.
Cai
,
Y. X.
Yang
,
W. D.
Dang
, and
S. S.
Zhang
, “
Multiscale limited penetrable horizontal visibility graph for analyzing nonlinear time series
,”
Sci. Rep.
6
,
35622
(
2016
).
47.
Q.
Cai
,
Z. K.
Gao
,
Y. X.
Yang
,
W. D.
Dang
, and
C.
Grebogi
, “
Multiplex limited penetrable horizontal visibility graph from EEG signals for driver fatigue detection
,”
Int. J. Neural Syst.
29
(
5
),
1850057
(
2019
).
48.
U.
Herwig
,
P.
Satrapi
, and
C.
Schonfeldt-Lecuona
, “
Using the international 10-20 EEG system for positioning of transcranial magnetic stimulation
,”
Brain Topogr.
16
(
2
),
95
99
(
2003
).
49.
M.
Kleiner
, “
Visual stimulus timing precision in psychtoolbox-3: Tests, pitfalls and solutions
,”
Perception
39
(
S
),
189
(
2010
).
50.
S.
Ajami
,
A.
Mahnam
, and
V.
Abootalebi
, “
An adaptive SSVEP-based brain-computer interface to compensate fatigue-induced decline of performance in practical application
,”
IEEE Trans. Neural. Syst. Rehabil. Eng.
26
(
11
),
2200
2209
(
2018
).
51.
S. P.
Heinrich
, “
Some thoughts on the interpretation of steady-state evoked potentials
,”
Doc. Ophthalmol.
120
(
3
),
205
214
(
2010
).
52.
D. H.
Zhu
,
J.
Bieger
,
G.
Garcia Molina
, and
R. M.
Aarts
, “
A survey of stimulation methods used in SSVEP-based BCIs
,”
Comput. Intell. Neurosci.
2010
,
12
(
2010
).
53.
E. M. A.
Smets
,
B.
Garssen
,
B.
Bonke
, and
J. C. J. M.
De Haes
, “
The multidimensional fatigue inventory (MFI) psychometric qualities of an instrument to assess fatigue
,”
J. Psychosom. Res.
39
(
3
),
315
325
(
1995
).
54.
A.
Delorme
and
S.
Makeig
, “
EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
,”
J. Neurosci. Methods
134
(
1
),
9
21
(
2004
).
55.
T. P.
Jung
,
S.
Makeig
,
C.
Humphries
,
T. W.
Lee
,
M. J.
McKeown
,
V.
Iragui
, and
T. J.
Sejnowski
, “
Removing electroencephalographic artifacts by blind source separation
,”
Psychophysiology
37
(
2
),
163
178
(
2000
).
56.
C. S.
Herrmann
, “
Human EEG responses to 1–100 Hz flicker: Resonance phenomena in visual cortex and their potential correlation to cognitive phenomena
,”
Exp. Brain Res.
137
(
3-4
),
346
353
(
2001
).
57.
S.
Zeki
,
J. D.
Watson
,
C. J.
Lueck
,
K. J.
Friston
,
C.
Kennard
, and
R. S.
Frackowiak
, “
A direct demonstration of functional specialization in human visual cortex
,”
J. Neurosci.
11
(
3
),
641
649
(
1991
).
58.
D. R.
Hardoon
,
S.
Szedmak
, and
J.
Shawe-Taylor
, “
Canonical correlation analysis: An overview with application to learning methods
,”
Neural Comput.
16
(
12
),
2639
2664
(
2004
).
59.
Z. L.
Lin
,
C. S.
Zhang
,
W.
Wu
, and
X. R.
Gao
, “
Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs
,”
IEEE Trans. Biomed. Eng.
53
(
12
),
2610
2614
(
2006
).
60.
M. A.
Hearst
, “
Support vector machines
,”
IEEE Intell. Syst. App.
13
(
4
),
18
21
(
1998
).
61.
A.
Subasi
and
M. I.
Gursoy
, “
EEG signal classification using PCA, ICA, LDA and support vector machines
,”
Expert. Syst. Appl.
37
(
12
),
8659
8666
(
2010
).
62.
M. R.
Xia
,
J. H.
Wang
, and
Y.
He
, “
Brainnet viewer: A network visualization tool for human brain connectomics
,”
PLoS One
8
(
7
),
e68910
(
2013
).
63.
C. E.
Ginestet
,
T. E.
Nichols
,
E. T.
Bullmore
, and
A.
Simmons
, “
Brain network analysis: Separating cost from topology using cost-integration
,”
PLoS One
6
(
7
),
e21570
(
2011
).
64.
M.
Rubinov
and
O.
Sporns
, “
Complex network measures of brain connectivity: Uses and interpretations
,”
Neuroimage
52
(
3
),
1059
1069
(
2010
).
65.
M. G.
Kitzbichler
,
R. N. A.
Henson
,
M. L.
Smith
,
P. J.
Nathan
, and
E. T.
Bullmore
, “
Cognitive effort drives workspace configuration of human brain functional networks
,”
J. Neurosci.
31
(
22
),
8259
8270
(
2011
).
66.
C.
Zhang
,
F. Y.
Cong
, and
H.
Wang
, “
Driver fatigue analysis based on binary brain networks
,”
ICIST
2017
,
485
489
(
2017
).
67.
R.
Ferri
,
F.
Rundo
,
O.
Bruni
,
M. G.
Terzano
, and
C. J.
Stam
, “
Small-world network organization of functional connectivity of EEG slow-wave activity during sleep
,”
Clin. Neurophysiol.
118
(
2
),
449
456
(
2007
).
You do not currently have access to this content.