A precipitation reaction can be driven by a gravity current that spreads on the bottom as a denser fluid is injected into an initially stagnant liquid. Supersaturation and nucleation are restricted to locations where the two liquids come into contact; hence, the flow pattern governs the spatial distribution of the final product. In this numerical study, we quantitatively characterize the flow associated with the gravity current prior to the onset of nucleation and distinguish three zones where the coupling of transport processes with the reaction can take place depending on their time scales. A scaling law associated with the region of Rayleigh–Taylor instability behind the tip of the gravity current is also determined.
REFERENCES
1.
I. R.
Epstein
and J. A.
Pojman
, An Introduction to Nonlinear Dynamics: Oscillations, Waves, Patterns, and Chaos
(Oxford University Press
, Oxford
, 1998
).2.
3.
L. M.
Barge
et al., “From chemical gardens to chemobrionics
,” Chem. Rev.
115
, 8652
–8703
(2015
). 4.
Q.
Wang
, M.
Bentley
, and O.
Steinbock
, “Self-organization of layered inorganic membranes in microfluidic devices
,” J. Phys. Chem. C
121
, 14120
–14127
(2017
). 5.
F.
Glaab
, J.
Garcia-Ruiz
, W.
Kunz
, and M.
Kellermeier
, “Diffusion and precipitation processes in iron-based silica gardens
,” Phys. Chem. Chem. Phys.
18
, 24850
–24858
(2016
). 6.
S.
Cardoso
, J.
Cartwright
, O.
Steinbock
, D.
Stone
, and N. L.
Thomas
, “Cement nanotubes: On chemical gardens and cement
,” Struct. Chem.
28
, 33
–37
(2017
). 7.
A.
Hussein
, J.
Maselko
, and J. T.
Pantaleone
, “Growing a chemical garden at the air–fluid interface
,” Langmuir
32
, 706
–711
(2016
). 8.
J. H. E.
Cartwright
, J. M.
García-Ruiz
, M. L.
Novella
, and F.
Otálora
, “Formation of chemical garden
,” J. Colloid Interface Sci.
256
, 351
–359
(2002
). 9.
R.
Makki
, L.
Roszol
, J. J.
Pagano
, and O.
Steinbock
, “Tubular precipitation structures: Materials synthesis under nonequilibrium conditions
,” Philos. Trans. R. Soc. A
370
, 2848
–2865
(2012
). 10.
B. C.
Batista
, P.
Cruz
, and O.
Steinbock
, “From hydrodynamic plumes to chemical gardens: The concentration-dependent onset of tube formation
,” Langmuir
30
, 9123
–9129
(2014
). 11.
E.
Nakouzi
, P.
Knoll
, and O.
Steinbock
, “Biomorph growth in single-phase systems: Expanding the structure spectrum and pH range
,” Chem. Commun.
52
, 2107
–2110
(2016
). 12.
L. M.
Barge
, Y.
Abedian
, M.
Russel
, I.
Doloboff
, J.
Cartwright
, R.
Kidd
, and I.
Kanik
, “From chemical gardens to fuel cells: Generation of electrical potential and current across self-assembling iron mineral membranes
,” Angew. Chem. Int. Ed.
54
, 8184
–8187
(2015
). 13.
A.
Baker
, Á.
Tóth
, D.
Horváth
, J.
Walkush
, A. S.
Ali
, W.
Morgan
, Á.
Kukovecz
, J. J.
Pantaleone
, and J.
Maselko
, “Precipitation pattern formation in the copper(ii) oxalate system with gravity flow and axial symmetry
,” J. Phys. Chem. A
113
, 8243
–8248
(2009
). 14.
B.
Bohner
, G.
Schuszter
, O.
Berkesi
, D.
Horváth
, and Á.
Tóth
, “Self-organization of calcium oxalate by flow-driven precipitation
,” Chem. Commun.
50
, 4289
–4291
(2014
). 15.
G.
Schuszter
, F.
Brau
, and A.
De Wit
, “Calcium carbonate mineralization in a confined geometry
,” Environ. Sci. Technol. Lett.
3
, 156
–159
(2016
). 16.
G.
Schuszter
and A.
De Wit
, “Comparison of flow-controlled calcium and barium carbonate precipitation patterns
,” J. Chem. Phys.
145
, 224201
(2016
). 17.
F.
Brau
, G.
Schuszter
, and A.
De Wit
, “Flow control of fronts by radial injection
,” Phys. Rev. Lett.
118
, 134101
(2017
). 18.
E.
Tóth-Szeles
, G.
Schuszter
, Á.
Tóth
, and D.
Horváth
, “Diffusive fingering in a precipitation reaction driven by autocatalysis
,” Chem. Commun.
50
, 5580
–5582
(2014
). 19.
Precipitation Patterns in Reaction-Diffusion Systems, edited by I. Lagzi (Research Signpost, 2010).
20.
B.
Bohner
, G.
Schuszter
, D.
Horváth
, and Á.
Tóth
, “Morphology control by flow-driven self-organizing precipitation
,” Chem. Phys. Lett.
631–632
, 114
–117
(2015
). 21.
E.
Tóth-Szeles
, G.
Schuszter
, Á.
Tóth
, Z.
Kónya
, and D.
Horváth
, “Flow-driven morphology control in the cobalt–oxalate system
,” CrystEngComm
18
, 2057
–2064
(2016
). 22.
D.
Wang
, Q.
Wang
, and T.
Wang
, “Morphology-controllable synthesis of cobalt oxalates and their conversion to mesoporous CoO nanostructures for application in supercapacitors
,” Inorg. Chem.
50
, 6482
–6492
(2011
). 23.
Á.
Tóth
, D.
Horváth
, Á.
Kukovecz
, M.
Maselko
, A.
Baker
, S.
Ali
, and J.
Maselko
, “Pathway control in the self-construction of complex precipitation forms in a Cu(II)–oxalate system
,” J. Syst. Chem.
3
, 4
(2012
). 24.
E.
Tóth-Szeles
, B.
Bohner
, Á.
Tóth
, and D.
Horváth
, “Spatial separation of copper and cobalt oxalate by flow-driven precipitation
,” Cryst. Growth Des.
17
, 5000
–5005
(2017
). 25.
L.
Talon
, N.
Goyal
, and E.
Meiburg
, “Variable density and viscosity, miscible displacements in horizontal Hele-Shaw cells. Part 1. Linear stability analysis
,” J. Fluid Mech.
721
, 268
–294
(2013
). 26.
M.
John
, R.
Oliveira
, F.
Heussler
, and E.
Meiburg
, “Variable density and viscosity, miscible displacements in horizontal Hele-Shaw cells. Part 2. Nonlinear simulations
,” J. Fluid Mech.
721
, 295
–323
(2013
). 27.
M.
Ungarish
, An Introduction to Gravity Currents and Intrusions
(CRC Press
, Boca Raton, FL
, 2009
).28.
P. K.
Kundu
and I. M.
Cohen
, Fluid Mechanics
, 3rd ed. (Elsevier Academic Press
, San Diego
, 2004
).29.
H. E.
Huppert
, “Gravity currents: A personal perspective
,” J. Fluid Mech.
554
, 299
–322
(2006
). 30.
R. T.
Bonnecaze
, H. E.
Huppert
, and J. R.
Lister
, “Particle-driven gravity currents
,” J. Fluid Mech.
250
, 339
–369
(1993
). 31.
M. I.
Cantero
, J. R.
Lee
, S.
Balachandar
, and M. H.
Garcia
, “On the front velocity of gravity currents
,” J. Fluid Mech.
586
, 1
–39
(2007
). 32.
F.
Haudin
, L. A.
Riolfo
, B.
Knaepen
, G. M.
Homsy
, and A.
De Wit
, “Experimental study of a buoyancy-driven instability of a miscible horizontal displacement in a Hele–Shaw cell
,” Phys. Fluids
26
, 044102
(2014
). 33.
G.
Jones
and S. K.
Talley
, “The viscosity of acqueous solutions as a function of the concentration
,” J. Am. Chem. Soc.
55
, 624
–642
(1933
). 34.
M.
Liberté
, “Model for calculating the viscosity of aqueous solutions
,” J. Chem. Eng. Data
52
, 321
–335
(2007
). 35.
R.
Zahorán
, Á.
Kukovecz
, Á.
Tóth
, D.
Horváth
, and G.
Schuszter
, “High-speed tracking of fast chemical precipitations
,” Phys. Chem. Chem. Phys.
21
, 11345
–11350
(2019
). 36.
B.
Bohner
, B.
Endrődi
, D.
Horváth
, and Á.
Tóth
, “Flow-driven pattern formation in the calcium–oxalate system
,” J. Chem. Phys.
144
, 164504
(2016
). 37.
H. G.
Weller
, G.
Tabor
, H.
Jasak
, and C.
Fureby
, “A tensorial approach to computational continuum mechanics using object orientated techniques
,” Comput. Phys.
12
, 620
–631
(1998
). 38.
R. I.
Issa
, “Solution of the implicitly discretised fluid flow equations by operator-splitting
,” J. Comp. Phys.
62
, 40
–65
(1985
). 39.
N.
Das
, B.
Müller
, Á.
Tóth
, D.
Horváth
, and G.
Schuszter
, “Macroscale precipitation kinetics: Towards complex precipitate structure design
,” Phys. Chem. Chem. Phys.
20
, 19768
–19775
(2018
). © 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.