The Fractional Gray Lotka-Volterra Model (FGLVM) is introduced and used for modeling the transaction counts of three cryptocurrencies, namely, Bitcoin, Litecoin, and Ripple. The 2-dimensional study is on Bitcoin and Litecoin, while the 3-dimensional study is on Bitcoin, Litecoin, and Ripple. Dataset from 28 April 2013 to 10 February 2018 provides forecasting values for Bitcoin and Litecoin through the 2-dimensional FGLVM study, while dataset from 7 August 2013 to 10 February 2018 provides forecasting values of Bitcoin, Litecoin, and Ripple through the 3-dimensional FGLVM study. Forecasting values of cryptocurrencies for the n-dimensional FGLVM study, n={2,3} along 100 days of study time, are displayed. The graph and Lyapunov exponents of the 2-dimensional Lotka-Volterra system using the results of FGLVM reveal that the system is a chaotic dynamical system, while the 3-dimensional Lotka-Volterra system displays parabolic patterns in spite of the chaos indicated by the Lyapunov exponents. The mean absolute percentage error indicates that 2-dimensional FGLVM has a good accuracy for the overall forecasting values of Bitcoin and a reasonable accuracy for the last 300 forecasting values of Litecoin, while the 3-dimensional FGLVM has a good accuracy for the overall forecasting values of Bitcoin and a reasonable accuracy for the last 300 forecasting values of both Litecoin and Ripple. Both 2- and 3-dimensional FGLVM analyses evoke a future constant trend in transacting Bitcoin and a future decreasing trend in transacting Litecoin and Ripple. Bitcoin will keep relatively higher transaction counts, with Litecoin transaction counts everywhere superior to that of Ripple.

1.
G.
Leibniz
,
Mathematische Schriften
(
Georg Olms Verlagsbuchhandlung
,
Hildesheim
,
1962
).
2.
H.
Koçak
and
A.
Yildirim
, “
An efficient new iterative method for finding exact solutions of non-linear time-fractional partial differential equations
,”
Nonlinear Anal. Model. Control
16
(
4
),
403
414
(
2011
).
3.
H.
Farid
, “
Discrete-time fractional differentiation from integer derivatives
,”
TR
2004
,
528
536
(
2004
).
4.
P.
Ostalczyk
and
D.
Brzezinński
, “
Numerical evaluation of variable-fractional-order derivatives
,”
Automatyka
15
(
3
),
431
441
(
2011
).
5.
F.
Ikeda
, “
A numerical algorithm of discrete fractional calculus by using inhomogeneous sampling data
,”
Trans. Soc. Instrum. Control Eng.
6
(
1
),
1
8
(
2007
).
6.
V. E.
Tarasov
, “
Differential equations with fractional derivative and universal map with memory
,”
J. Phys. A Math. Theor.
42
,
465102
(
2009
).
7.
P.
Kotha
and
B. T.
Krishna
, “
Comparative study of fractional order derivative based on image enhancement techniques
,”
Int. J. Res. Comput. Commun. Technol.
3
(
2
),
231
235
(
2014
).
8.
D. Y.
Liu
,
O.
Gibaru
,
W.
Perruquetti
, and
T. M.
Laleg-Kirati
, “
Fractional order differentiation by integration and error analysis in noisy environment
,”
IEEE Trans. Automat. Contr.
60
(
11
),
2945
2960
(
2015
).
9.
H.
Bao
,
J. H.
Park
, and
J.
Cao
, “
Synchronization of fractional-order delayed neural networks with hybrid coupling
,”
Complexity
21
(
S1
),
106
112
(
2016
).
10.
Y.
Shen
,
B.
He
, and
P.
Qin
, “
Fractional-order grey prediction method for non-equidistant sequences
,”
Entropy
18
(
6
),
227
(
2016
).
11.
D.
Baleanu
and
A.
Fernandez
, “
On some new properties of fractional derivatives with Mittag-Leffler kernel
,”
Commun. Nonlinear Sci. Numer. Simul.
59
,
444
462
(
2017
).
12.
M.
Ciesielski
and
T.
Blaszczyk
, “
The multiple composition of the left and right fractional Riemann-Liouville integrals—Analytical and numerical calculations
,”
Filomat
31
(
19
),
6087
6099
(
2017
).
13.
H. B.
Bao
,
J. D.
Cao
, and
J.
Kurths
, “
State estimation of fractional-order delayed memristive neural networks
,”
Nonlinear Dyn.
94
(
2
),
1215
1225
(
2018
).
14.
J.
Zhang
,
J.
Wu
,
H.
Bao
, and
J.
Cao
, “
Synchronization analysis of fractional-order three-neuron BAM neural networks with multiple time delays
,”
Appl. Math. Comput.
339
(
C
),
441
450
(
2018
).
15.
V.
Zakharchenko
and
I. G.
Kovalenko
, “
Best approximation of the fractional semi-derivative operator by exponential series
,”
Mathematics
6
(
12
),
12
(
2018
).
16.
L.
Wu
,
S.
Liu
, and
Y.
Wang
, “
Grey Lotka-Volterra model and its applications
,”
Technol. Forecast. Soc. Change
79
,
1720
1730
(
2012
).
17.
P.
Gatabazi
,
J. C.
Mba
,
E.
Pindza
, and
C.
Labuschagne
, “
Grey Lotka-Volterra model with application to cryptocurrencies adoption
,”
Chaos Solitons Fractals
122
,
47
57
(
2019
).
18.
S. B.
Angela
, see “Ten types of digital currencies and how they work,” Online trading: Free introductory eBook, 24 September 2016.
19.
A.
Blundell-Wignall
, “The Bitcoin question: Currency versus trust-less transfer technology,” OECD Working Papers on Finance, Insurance and Private Pensions, No. 37 (OECD Publishing, 2014).
20.
J. R.
Hendrickson
,
T. L.
Hogan
, and
W. J.
Luther
, “
The political economy of Bitcoin
,”
Econ. Inq.
54
(
2
),
925
939
(
2016
).
21.
P.
Wayner
,
Digital Cash
, 2nd ed. (
AP Professional
,
London
,
1997
).
22.
A.
Urquhart
, “
The inefficiency of Bitcoin
,”
Econ. Lett.
148
,
80
82
(
2016
).
23.
S.
Chan
,
J.
Chu
,
S.
Nadarajah
, and
J.
Osterrieder
, “
A statistical analysis of cryptocurrencies
,”
J. Risk Financial Manage.
10
(
2
),
12
(
2017
).
24.
J.
Bhosale
and
S.
Mavale
, “
Volatility of select crypto-currencies: A comparison of Bitcoin, Ethereum and Litecoin
,”
Ann. Res. J. SCMS Pune
6
,
132
(
2018
).
25.
H.-T.
Wang
and
T.-C.
Wang
, “
Application of grey Lotka-Volterra model to forecast the diffusion and competition analysis of the TV and smart-phone industries
,”
Technol. Forecast. Soc. Change
106
,
37
44
(
2016
).
26.
N.-M.
Xie
and
S.-F.
Liu
, “
Discrete grey forecasting model and its optimization
,”
Appl. Math. Model.
33
,
1173
1186
(
2009
).
27.
N. M.
Xie
,
S. F.
Liu
,
Y. J.
Yang
, and
C. Q.
Yuan
, “
On a novel grey forecasting model based on no-homogeneous index sequence
,”
Appl. Math. Model.
37
,
5059
5068
(
2013
).
28.
W.
Zhou
and
J.-M.
He
, “
Generalised GM(1,1) model and its application in forecasting of fuel production
,”
Appl. Math. Model.
37
,
6234
6243
(
2013
).
29.
A. M.
Lyapunov
,
The General Problem of the Stability of Motion
(
Taylor & Francis
,
London
,
1992
).
30.
Y.
Povstenko
,
Linear Fractional Diffusion-Wave Equation for Scientists and Engineers
(
Bikhäuser
,
New York
,
2015
).
31.
J. B.
Diaz
and
T. J.
Osier
, “
Differences of fractional order
,”
Math. Comput.
28
(
125
),
185
202
(
1974
).
32.
J. J.
Mohan
and
G. V. S. R.
Deekshitulu
, “
Fractional order difference equations
,”
Int. J. Diff. Equ.
2012
,
780619
(
2012
).
33.
C.
Strobeck
, “
N species competition
,”
Ecology
54
(
3
),
650
654
(
1973
).
34.
M. C.
Anisiu
, “
Lotka-Volterra and their model
,”
Didactica Mathematica
32
,
9
17
(
2014
).
35.
T. L.
Tien
, “
A new grey prediction model FGM(1,1)
,”
Math. Comput. Model.
49
,
1416
1426
(
2009
).
36.
L. F.
Wu
,
S. F.
Liu
,
W.
Cui
,
D. L.
Liu
, and
T. X.
Yao
, “
Non-homogeneous discrete grey model with fractional-order accumulation
,”
Neural Comput. Appl.
25
,
1215
1221
(
2014
).
37.
R. A.
Thietart
and
B.
Forgues
, “
Chaos theory and organization
,”
Organ. Sci.
6
(
1
),
19
31
(
1995
).
You do not currently have access to this content.