In this paper, the reliable synchronization of oscillatory power networks with different topologies is investigated by presenting two simple control strategies, namely, phase feedback control and frequency feedback control. The power networks are modeled by the coupled second-order Kuramoto oscillators that represent both consumers and generators. Through the simulations on the power networks with control, it is found that both the proposed control strategies can effectively enhance the synchronizability of the power networks, except for the case when the frequency feedback strategy is adopted for a coupled power network with the WS structure. In this case, it is observed that the critical coupling strength reaches the smallest value when the feedback control strength is equal to one and a sudden drop of order parameter occurs as the control strength further increases. This work provides innovative ideas for constructing a cost-effective power system.

1.
S. H.
Strogatz
, “
From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators
,”
Physica D
143
,
1
20
(
2000
).
2.
T.
Coletta
and
P.
Jacquod
, “
Linear stability and the Braess paradox in coupled-oscillator networks and electric power grids
,”
Phys. Rev. E
93
,
032222
(
2016
).
3.
S.
Olmi
, “
Chimera states in coupled Kuramoto oscillators with inertia
,”
Chaos
25
,
123125
(
2015
).
4.
D.
Manik
,
M.
Timme
, and
D.
Witthaut
, “
Cycle flows and multistability in oscillatory networks
,”
Chaos
27
,
083123
(
2017
).
5.
C. W.
Gellings
and
K. E.
Yeagee
, “
Transforming the electric infrastructure
,”
Phys. Today
57
(
12
),
45
51
(
2004
).
6.
Y.
Yang
and
A. E.
Motter
, “
Cascading failures as continuous phase-space transitions
,”
Phys. Rev. Lett.
119
,
248302
(
2017
).
7.
C. W.
Wang
,
C.
Grebogi
, and
M. S.
Baptista
, “
Control and prediction for blackouts caused by frequency collapse in smart grids
,”
Chaos
26
,
093119
(
2016
).
8.
S.
Auer
,
K.
Kleis
,
P.
Schultz
,
J.
Kurths
, and
F.
Hellmann
, “
The impact of model detail on power grid resilience measures
,”
Eur. Phys. J. Spec. Top.
225
,
609
625
(
2016
).
9.
l. V.
Belykh
,
B. N.
Barrett
, and
V. N.
Vladimir
, “
Bistability of patterns of synchrony in Kuramoto oscillators with inertia
,”
Chaos
26
,
094822
(
2016
).
10.
F.
Dorfler
and
F.
Bullo
, “
Synchronization in complex oscillator networks of phase oscillators: A survey
,”
Automatica
50
(
6
),
1539
1564
(
2014
).
11.
F.
Dorfler
,
M.
Chertkov
, and
F.
Bullo
, “
Synchronization in complex oscillator networks and smart grids
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
2005
2010
(
2013
).
12.
G.
Filatrella
,
A. H.
Nielsen
, and
N. F.
Pedersen
, “
Analysis of a power grid using a Kuramoto-like model
,”
Eur. Phys. J. B
61
,
485
491
(
2008
).
13.
H. P.
Ren
,
J.
Song
,
R.
Yang
,
M. S.
Baptista
, and
C.
Grebogi
, “
Cascade failure analysis of power grid using new load distribution law and node removal rule
,”
Physica A
442
,
239
(
2016
).
14.
A.
Wang
,
Y.
Tang
,
H.
Sun
,
W.
Wu
, and
J.
Yi
, “An adaptive emergency control method for interconnected power grids against frequency decline and system blackout,” in Proceedings of the 2012 Conference on Power and Energy (IEEE, 2012), p. 439.
15.
B.
Carareto
,
M. S.
Baptista
, and
C.
Grebogi
, “
Natural synchronization in power-grids with anti-correlated units
,”
Commun. Nonlinear Sci. Numer. Simul.
3
,
4
15
(
2013
).
16.
D.
Anderson
,
A.
Tenzer
, and
G.
Barlev
, “
Multiscale dynamics in communities of phase oscillators
,”
Chaos
22
,
013102
(
2012
).
17.
L.
Cao
,
A. H.
Tian
,
Z. H.
Wang
, and
Z. H.
Liu
, “
Influence of stochastic perturbations on the cluster explosive synchronization of second-order Kuramoto oscillators on networks
,”
Phys. Rev. E
97
,
022220
(
2018
).
18.
P.
Pourbeik
,
P. S.
Kundur
, and
C. W.
Taylor
, “
The anatomy of a power grid blackout-root causes and dynamics of recent major blackouts
,”
IEEE Power Energy Mag.
4
,
22
29
(
2006
).
19.
J. H.
Chen
,
J. W.
Wu
,
X. Y.
Xia
, and
X.
Zhang
, “
Robustness of interdependent power grids and communication networks: A complex network perspective
,”
IEEE Trans. Circuits Syst. II Express Briefs
65
,
115
119
(
2018
).
20.
D.
Witthaut
and
M.
Timme
, “
Braess’s paradox in oscillator networks, desynchronization and power outage
,”
New J. Phys.
14
,
083036
(
2012
).
21.
J. W.
Wu
,
W.
You
,
T. C.
Wu
, and
Y. X.
Xia
, “
Abnormal phenomenon in robustness of complex networks with heterogeneous node functions
,”
Physica A
506
,
451
461
(
2018
).
22.
D.
Dudkowski
,
Y.
Maistrenko
, and
T.
Kapitaniak
, “
Occurrence and stability of chimera states in coupled externally excited oscillators
,”
Chaos
26
,
116306
(
2016
).
23.
A.
Sabine
,
H.
Frank
, and
K.
Marie
, “
Stability of synchrony against local intermittent fluctuations in tree-like power grids
,”
Chaos
27
,
127003
(
2017
).
24.
L. X.
Yang
and
J.
Jiang
, “
Influence of edge additions on the synchronizability of oscillatory power networks
,”
Commun. Nonlinear Sci. Numer. Simul.
41
,
11
18
(
2016
).
25.
P. D.
Hines
,
I.
Dobson
, and
P.
Rezaei
, “
Cascading power outages propagate locally in an influence graph that is not the actual grid topology
,”
IEEE Trans. Power Syst.
32
,
958
967
(
2017
).
26.
B.
Pietras
and
A.
Daffertshofer
, “
Ott-Antonsen attractiveness for parameter-dependent oscillatory systems
,”
Chaos
26
,
103101
(
2016
).
27.
P.
Delellis
and
M.
di Bernardo
, “
On adaptive bounded synchronization in power network models
,”
IEEE Int. Symp. Circuits Syst.
4
,
1640
1643
(
2012
).
28.
F.
Dorfler
and
F.
Bullo
, “
Kron reduction of graphs with applications to electrical networks
,”
IEEE Trans. Circuits Syst. I Regul. Pap.
60
,
150
163
(
2013
).
29.
S. Y.
Caliskan
and
P.
Tabuada
, “
Towards Kron reduction of generalized electrical networks
,”
Automatica
50
,
2586
2590
(
2014
).
You do not currently have access to this content.