Spatial epidemic spreading, a fundamental dynamical process upon complex networks, attracts huge research interest during the past few decades. To suppress the spreading of epidemic, a couple of effective methods have been proposed, including node vaccination. Under such a scenario, nodes are immunized passively and fail to reveal the mechanisms of active activity. Here, we suggest one novel model of an observer node, which can identify infection through interacting with infected neighbors and inform the other neighbors for vaccination, on multiplex networks, consisting of epidemic spreading layer and information spreading layer. In detail, the epidemic spreading layer supports susceptible-infected-recovered process, while observer nodes will be selected according to several algorithms derived from percolation theory. Numerical simulation results show that the algorithm based on large degree performs better than random placement, while the algorithm based on nodes’ degree in the information spreading layer performs the best (i.e., the best suppression efficacy is guaranteed when placing observer nodes based on nodes’ degree in the information spreading layer). With the help of state probability transition equation, the above phenomena can be validated accurately. Our work thus may shed new light into understanding control of empirical epidemic control.

1.
R.
Pastor-Satorras
and
A.
Vespignani
, “
Epidemic spreading in scale-free networks
,”
Phys. Rev. Lett.
86
,
3200
(
2001
).
2.
M. E. J.
Newman
, “
Spread of epidemic disease on networks
,”
Phys. Rev. E
66
,
016128
(
2002
).
3.
A.
Barrat
,
M.
Barthelemy
, and
A.
Vespignani
,
Dynamical Processes on Complex Networks
(
Cambridge University Press
,
2008
).
4.
M.
Brede
, “
Networks—An introduction. Mark E. J. Newman. (2010, Oxford University Press.)
,”
Artif. Life
18
,
241
242
(
2012
).
5.
H. E.
Stanley
,
Phase Transitions and Critical Phenomena
(
Clarendon Press, Oxford
,
1971
).
6.
J.
Marro
and
R.
Dickman
,
Nonequilibrium Phase Transitions in Lattice Models
(
Cambridge University Press
,
2005
).
7.
M.
Barthélemy
,
A.
Barrat
,
R.
Pastor-Satorras
, and
A.
Vespignani
, “
Velocity and hierarchical spread of epidemic outbreaks in scale-free networks
,”
Phys. Rev. Lett.
92
,
178701
(
2004
).
8.
J.
Gómez-Gardeñes
,
V.
Latora
,
Y.
Moreno
, and
E.
Profumo
, “
Spreading of sexually transmitted diseases in heterosexual populations
,”
Proc. Natl. Acad. Sci.
105
,
1399
1404
(
2008
).
9.
M. E.
Newman
, “
The structure and function of complex networks
,”
SIAM Rev.
45
,
167
256
(
2003
).
10.
S.
Boccaletti
,
V.
Latora
,
Y.
Moreno
,
M.
Chavez
, and
D.
Hwang
, “
Complex networks: Structure and dynamics
,”
Phys. Rep.
424
,
175
308
(
2006
).
11.
M.
Boguná
,
C.
Castellano
, and
R.
Pastor-Satorras
, “
Nature of the epidemic threshold for the susceptible-infected-susceptible dynamics in networks
,”
Phys. Rev. Lett.
111
,
068701
(
2013
).
12.
N. T.
Bailey
et al.,
The Mathematical Theory of Infectious Diseases and Its Applications
, 2nd ed. (
Charles Griffin & Company Ltd
,
High Wycombe, UK
,
1975
).
13.
K.
Huang
,
Y.
Zhang
,
Y.
Li
,
C.
Yang
, and
Z.
Wang
, “
Effects of external forcing on evolutionary games in complex networks
,”
Chaos
28
,
093108
(
2018
).
14.
A.
Grabowski
and
R.
Kosiński
, “
Epidemic spreading in a hierarchical social network
,”
Phys. Rev. E
70
,
031908
(
2004
).
15.
K.
Huang
,
Y.
Cheng
,
X.
Zheng
, and
Y.
Yang
, “
Cooperative behavior evolution of small groups on interconnected networks
,”
Chaos Solitons Fractals
80
,
90
95
(
2015
).
16.
A. V.
Goltsev
,
S. N.
Dorogovtsev
,
J. G.
Oliveira
, and
J. F.
Mendes
, “
Localization and spreading of diseases in complex networks
,”
Phys. Rev. Lett.
109
,
128702
(
2012
).
17.
Y.
Ibuka
,
M.
Li
,
J.
Vietri
,
G. B.
Chapman
, and
A. P.
Galvani
, “
Free-riding behavior in vaccination decisions: An experimental study
,”
PLoS ONE
9
,
e87164
(
2014
).
18.
P. J.
Francis
, “
Dynamic epidemiology and the market for vaccinations
,”
J. Public. Econ.
63
,
383
406
(
1997
).
19.
C. T.
Bauch
,
A. P.
Galvani
, and
D. J.
Earn
, “
Group interest versus self-interest in smallpox vaccination policy
,”
Proc. Natl. Acad. Sci. U.S.A.
100
,
10564
10567
(
2003
).
20.
R.
Albert
,
H.
Jeong
, and
A.-L.
Barabási
, “
Error and attack tolerance of complex networks
,”
Nature
406
,
378
(
2000
).
21.
P.
Holme
,
B. J.
Kim
,
C. N.
Yoon
, and
S. K.
Han
, “
Attack vulnerability of complex networks
,”
Phys. Rev. E
65
,
056109
(
2002
).
22.
M.
Kitsak
,
L. K.
Gallos
,
S.
Havlin
,
F.
Liljeros
,
L.
Muchnik
,
H. E.
Stanley
, and
H. A.
Makse
, “
Identification of influential spreaders in complex networks
,”
Nat. Phys.
6
,
888
(
2010
).
23.
N.
Masuda
, “
Immunization of networks with community structure
,”
New J. Phys.
11
,
123018
(
2009
).
24.
P.
Holme
, “
Efficient local strategies for vaccination and network attack
,”
Europhys. Lett.
68
,
908
(
2004
).
25.
Y.
Chen
,
G.
Paul
,
S.
Havlin
,
F.
Liljeros
, and
H. E.
Stanley
, “
Finding a better immunization strategy
,”
Phys. Rev. Lett.
101
,
058701
(
2008
).
26.
R.
Pastor-Satorras
and
A.
Vespignani
, “
Immunization of complex networks
,”
Phys. Rev. E
65
,
036104
(
2002
).
27.
Z.
Dezso
and
A.-L.
Barabási
, “
Halting viruses in scale-free networks
,”
Phys. Rev. E
65
,
055103
(
2002
).
28.
R.
Cohen
,
S.
Havlin
, and
D.
Ben-Avraham
, “
Efficient immunization strategies for computer networks and populations
,”
Phys. Rev. Lett.
91
,
247901
(
2003
).
29.
A. Y.
Lokhov
and
D.
Saad
, “
Optimal deployment of resources for maximizing impact in spreading processes
,”
Proc. Natl. Acad. Sci. U.S.A.
114
,
E8138
E8146
(
2017
).
30.
S.
Boccaletti
,
G.
Bianconi
,
R.
Criado
,
C. I.
Del Genio
,
J.
Gómez-Gardenes
,
M.
Romance
,
I.
Sendina-Nadal
,
Z.
Wang
, and
M.
Zanin
, “
The structure and dynamics of multilayer networks
,”
Phys. Rep.
544
,
1
122
(
2014
).
31.
S.
Gomez
,
A.
Diaz-Guilera
,
J.
Gomez-Gardenes
,
C. J.
Perez-Vicente
,
Y.
Moreno
, and
A.
Arenas
, “
Diffusion dynamics on multiplex networks
,”
Phys. Rev. Lett.
110
,
028701
(
2013
).
32.
Z.
Wang
,
L.
Wang
, and
M.
Perc
, “
Degree mixing in multilayer networks impedes the evolution of cooperation
,”
Phys. Rev. E
89
,
052813
(
2014
).
33.
D.
Zhao
,
L.
Wang
,
Z.
Wang
, and
G.
Xiao
, “
Virus propagation and patch distribution in multiplex networks: Modeling, analysis, and optimal allocation
,”
IEEE Trans. Inf. Forensics Security
14
,
1755
1767
(
2019
).
34.
D.
Zhao
,
B.
Gao
,
Y.
Wang
,
L.
Wang
, and
Z.
Wang
, “
Optimal dismantling of interdependent networks based on inverse explosive percolation
,”
IEEE Trans. Circuits Syst. II Express Briefs
65
,
953
957
(
2018
).
35.
C.
Granell
,
S.
Gómez
, and
A.
Arenas
, “
Dynamical interplay between awareness and epidemic spreading in multiplex networks
,”
Phys. Rev. Lett.
111
,
128701
(
2013
).
36.
M.
De Domenico
,
C.
Granell
,
M. A.
Porter
, and
A.
Arenas
, “
The physics of spreading processes in multilayer networks
,”
Nat. Phys.
12
,
901
(
2016
).
37.
C.
Buono
,
L. G.
Alvarez-Zuzek
,
P. A.
Macri
, and
L. A.
Braunstein
, “
Epidemics in partially overlapped multiplex networks
,”
PLoS ONE
9
,
e92200
(
2014
).
38.
J.
Sanz
,
C.
Xia
,
S.
Meloni
, and
Y.
Moreno
, “
Dynamics of interacting diseases
,”
Phys. Rev. X
4
,
041005
(
2014
).
39.
F. D.
Sahneh
and
C.
Scoglio
, “
Competitive spreading over arbitrary multilayer networks
,”
Phys. Rev. E
89
,
062817
(
2014
).
40.
Q.
Guo
,
X.
Jiang
,
Y.
Lei
,
M.
Li
,
Y.
Ma
, and
Z.
Zheng
, “
Two-stage effects of awareness cascade on epidemic spreading in multiplex networks
,”
Phys. Rev. E
91
,
012822
(
2015
).
41.
C.
Granell
,
S.
Gómez
, and
A.
Arenas
, “
Competing spreading processes on multiplex networks: Awareness and epidemics
,”
Phys. Rev. E
90
,
012808
(
2014
).
42.
E.
Massaro
and
F.
Bagnoli
, “
Epidemic spreading and risk perception in multiplex networks: A self-organized percolation method
,”
Phys. Rev. E
90
,
052817
(
2014
).
43.
W.
Wang
,
M.
Tang
,
H.
Yang
,
Y.
Do
,
Y.
Lai
, and
G.
Lee
, “
Asymmetrically interacting spreading dynamics on complex layered networks
,”
Sci. Rep.
4
,
5097
(
2014
).
44.
D.
Zhao
,
L.
Wang
,
S.
Li
,
Z.
Wang
,
L.
Wang
, and
B.
Gao
, “
Immunization of epidemics in multiplex networks
,”
PLoS ONE
9
,
e112018
(
2014
).
45.
H.
Zhang
,
J.
Xie
,
M.
Tang
, and
Y.
Lai
, “
Suppression of epidemic spreading in complex networks by local information based behavioral responses
,”
Chaos
24
,
043106
(
2014
).
46.
W.
Wang
,
Q.
Liu
,
S.
Cai
,
M.
Tang
,
L. A.
Braunstein
, and
H. E.
Stanley
, “
Suppressing disease spreading by using information diffusion on multiplex networks
,”
Sci. Rep.
6
,
29259
(
2016
).
47.
M.
Sun
,
H.
Zhang
,
H.
Kang
,
G.
Zhu
, and
X.
Fu
, “
Epidemic spreading on adaptively weighted scale-free networks
,”
J. Math. Biol.
74
,
1263
1298
(
2017
).
48.
X.
Fu
,
M.
Small
,
D. M.
Walker
, and
H.
Zhang
, “
Epidemic dynamics on scale-free networks with piecewise linear infectivity and immunization
,”
Phys. Rev. E
77
,
036113
(
2008
).
49.
T.
Takaguchi
,
T.
Hasegawa
, and
Y.
Yoshida
, “
Suppressing epidemics on networks by exploiting observer nodes
,”
Phys. Rev. E
90
,
012807
(
2014
).
50.
S.
Osat
,
A.
Faqeeh
, and
F.
Radicchi
, “
Optimal percolation on multiplex networks
,”
Nat. Commun.
8
,
1540
(
2017
).
51.
B.
Karrer
and
M. E.
Newman
, “
Message passing approach for general epidemic models
,”
Phys. Rev. E
82
,
016101
(
2010
).
52.
A. Y.
Lokhov
,
M.
Mézard
, and
L.
Zdeborová
, “
Dynamic message-passing equations for models with unidirectional dynamics
,”
Phys. Rev. E
91
,
012811
(
2015
).
You do not currently have access to this content.