The problem of self-sustained oscillations in excitable complex networks is the central issue under investigation, among which the prediction and the realization of self-sustained oscillations in different kinds of excitable networks are the challenging tasks. In this paper, we extensively investigate the prediction and the realization of a Winfree loop sustained oscillation (WLSO) in two-dimensional (2D) excitable lattices. By analyzing the network structure, the fundamental oscillation source structure (FOSS) of WLSO in a 2D excitable lattice is exposed explicitly. For the suitable combinations of system parameters, the Winfree loop can self-organize on the FOSS to form an oscillation source sustaining the oscillation, and these suitable parameter combinations are predicted by calculating the minimum Winfree loop length and have been further confirmed in numerical simulations. However, the FOSS cannot spontaneously offer the WLSO in 2D excitable lattices in usual cases due to the coupling bidirectionality and the symmetry properties of the lattice. A targeted protection scheme of the oscillation source is proposed by overcoming these two drawbacks. Finally, the WLSO is realized in the 2D excitable lattice successfully.

1.
E.
Meron
, “
Pattern formation in excitable media
,”
Phys. Rep.
218
,
1
66
(
1992
).
2.
C.
Cross
and
P. C.
Hoheberg
, “
Pattern formation outside of equilibrium
,”
Rev. Mod. Phys.
65
,
851
1112
(
1993
).
3.
A. N.
Zaikin
and
A. M.
Zhabotinsky
, “
Concentration wave propagation in two-dimensional liquid-phase self-oscillating system
,”
Nature
225
,
535
537
(
1970
).
4.
A. T.
Winfree
,
When Time Breaks Down
(
Princeton University Press
,
Princeton, NJ
,
1987
).
5.
R. A.
Gray
,
A. M.
Pertsov
, and
J.
Jalife
, “
Spatial and temporal organization during cardiac fibrillation
,”
Nature
392
,
75
78
(
1998
).
6.
J. N.
Weiss
,
P.
Chen
,
Z.
Qu
,
H. S.
Karagueuzian
, and
A.
Garfinkel
, “
Ventricular fibrillation how do we stop the waves from breaking?
,”
Circ. Res.
87
,
1103
1107
(
2000
).
7.
S.
Alonso
,
F.
Sagués
, and
A. S.
Mikhailov
, “
Taming Winfree turbulence of scroll waves in excitable media
,”
Science
299
,
1722
1725
(
2003
).
8.
J.
Ma
,
B.
Hu
,
C.
Wang
, and
W.
Jin
, “
Simulating the formation of spiral wave in the neuronal system
,”
Nonlinear Dyn.
73
,
73
83
(
2013
).
9.
G.
Yuan
,
T.
Bai
,
L.
Zhou
,
G.
Wang
, and
S.
Yang
, “
Synchronization of spiral waves in an excitable bilayer with multiple coupled patches
,”
Nonlinear Dyn.
82
,
909
918
(
2015
).
10.
B.
Hutcheon
and
Y.
Yarom
, “
Resonance, oscillation and the intrinsic frequency preferences of neurons
,”
Trends Neurosci.
23
,
216
222
(
2000
).
11.
E.
Marder
and
D.
Bucher
, “
Central pattern generators and the control of rhythmic movements
,”
Curr. Biol.
11
,
R986
R996
(
2001
).
12.
N. F.
Rulkov
,
I.
Timofeev
, and
M.
Bazhenov
, “
Oscillations in large-scale cortical networks: Map-based model
,”
J. Comput. Neurosci.
17
,
203
223
(
2004
).
13.
G.
Buzsáki
and
A.
Draguhn
, “
Neuronal oscillations in cortical networks
,”
Science
304
,
1926
1929
(
2004
).
14.
S.
Olmi
,
R.
Livi
,
A.
Politi
, and
A.
Torcini
, “
Collective oscillations in disordered neural networks
,”
Phys. Rev. E
81
,
046119
(
2010
).
15.
J.
Wang
and
Z.
Liu
, “
Exciting threshold dependence of self-sustained spikes in excitable neurons
,”
Europhys. Lett.
95
,
10001
(
2011
).
16.
X.
Sun
,
J.
Lei
,
M.
Perc
,
J.
Kurths
, and
G.
Chen
, “
Burst synchronization transitions in a neuronal network of subnetworks
,”
Chaos
21
,
016110
(
2011
).
17.
Y.
Gao
and
J.
Wang
, “
Oscillation propagation in neural networks with different topologies
,”
Phys. Rev. E
83
,
031909
(
2011
).
18.
T.
Wilson
,
A. D.
Jacob
,
R. H.
Leigh
,
N. E.
Emad
,
R. M.
Joseph
,
S. A.
William
,
N. B.
Emery
,
H.
Eric
, and
S. C.
Sydney
, “
Single-neuron dynamics in human focal epilepsy
,”
Nat. Neurosci.
14
,
635
641
(
2011
).
19.
K.
Xu
,
X.
Zhang
,
C.
Wang
, and
Z.
Liu
, “
A simplified memory network model based on pattern formations
,”
Sci. Rep.
4
,
7568
(
2014
).
20.
N.
Li
,
K.
Daie
,
K.
Svoboda
, and
S.
Druckmann
, “
Robust neuronal dynamics in premotor cortex during motor planning
,”
Nature
532
,
459
464
(
2016
).
21.
J.
Li
,
J.
Tang
,
J.
Ma
,
M.
Du
,
R.
Wang
, and
Y.
Wu
, “
Dynamic transition of neuronal firing induced by abnormal astrocytic glutamate oscillation
,”
Sci. Rep.
6
,
32343
(
2016
).
22.
C.
Yao
,
M.
Zhan
,
J.
Shuai
,
J.
Ma
, and
J.
Kurths
, “
Insensitivity of synchronization to network structure in chaotic pendulum systems with time-delay coupling
,”
Chaos
27
,
126702
(
2017
).
23.
Y.
Xu
,
Y.
Jia
,
J.
Ma
,
T.
Hayat
, and
A.
Alsaedi
, “
Collective responses in electrical activities of neurons under field coupling
,”
Sci. Rep.
8
,
1349
(
2018
).
24.
L. M.
Ward
, “
Synchronous neural oscillations and cognitive processes
,”
Trends Cogn. Sci.
7
,
553
559
(
2003
).
25.
H. J.
Luhmann
,
A.
Sinning
,
J.
Yang
,
V.
Reyes-Puerta
,
M. C.
Stüttgen
,
S.
Kirischuk
, and
W.
Kilb
, “
Spontaneous neuronal activity in developing neocortical networks: From single cells to large-scale interactions
,”
Front. Neural Circuits
10
,
40
(
2016
).
26.
S.
Haegens
,
J.
Vergara
,
R.
Rossi-Pool
,
L.
Lemus
, and
R.
Romo
, “
Beta oscillations reflect supramodal information during perceptual judgment
,”
Proc. Natl. Acad. Sci. U.S.A.
114
,
13810
13815
(
2017
).
27.
X.
Shang
,
B.
Xu
,
Q.
Li
,
B.
Zhai
,
X.
Xu
, and
T.
Zhang
, “
Neural oscillations as a bridge between glutamatergic system and emotional behaviors in simulated microgravity-induced micet
,”
Behav. Brain Res.
317
,
286
291
(
2017
).
28.
A. J.
Mably
and
L. L.
Colgin
, “
Gamma oscillations in cognitive disorders
,”
Curr. Opin. Neurobiol.
52
,
182
187
(
2018
).
29.
A.
Roxin
,
H.
Riecke
, and
S. A.
Solla
, “
Self-sustained activity in a small-world network of excitable neurons
,”
Phys. Rev. Lett.
92
,
198101
(
2004
).
30.
A.
Gomez-Marin
,
J.
Garcia-Ojalvo
, and
J. M.
Sancho
, “
Self-sustained spatiotemporal oscillations induced by membrane-bulk coupling
,”
Phys. Rev. Lett.
98
,
168303
(
2007
).
31.
D.
Battaglia
,
N.
Brunel
, and
D.
Hansel
, “
Temporal decorrelation of collective oscillations in neural networks with local inhibition and long-range excitation
,”
Phys. Rev. Lett.
99
,
238106
(
2007
).
32.
S.
Sinha
,
J.
Saramäki
, and
K.
Kaski
, “
Emergence of self-sustained patterns in small-world excitable media
,”
Phys. Rev. E
76
,
015101(R)
(
2007
).
33.
D.
Guo
and
C.
Li
, “
Self-sustained irregular activity in 2-D small-world networks of excitatory and inhibitory neurons
,”
IEEE Trans. Neural Netw.
21
,
895
905
(
2010
).
34.
P.
Stratton
and
J.
Wiles
, “
Self-sustained non-periodic activity in networks of spiking neurons: The contribution of local and long-range connections and dynamic synapses
,”
NeuroImage
52
,
1070
1079
(
2010
).
35.
S.
Wang
,
C. C.
Hilgetag
, and
C.
Zhou
, “
Sustained activity in hierarchical modular neural networks: Self-organized criticality and oscillations
,”
Front. Comput. Neurosci.
5
,
30
(
2011
).
36.
P.
McGraw
and
M.
Menzinger
, “
Self-sustaining oscillations in complex networks of excitable elements
,”
Phys. Rev. E
83
,
037102
(
2011
).
37.
Y.
Mi
,
X.
Liao
,
X.
Huang
,
L.
Zhang
,
W.
Gu
,
G.
Hu
, and
S.
Wu
, “
Long-period rhythmic synchronous firing in a scale-free network
,”
Proc. Natl. Acad. Sci. U.S.A.
25
,
E4931
E4936
(
2013
).
38.
W.
Gu
,
X.
Liao
,
L.
Zhang
,
X.
Huang
,
G.
Hu
, and
Y.
Mi
, “
Synchronous firings in small-world networks of excitable nodes
,”
Europhys. Lett.
102
,
28001
(
2013
).
39.
N. E.
Kouvaris
,
T.
Isele
,
A. S.
Mikhailov
, and
E.
Schöll
, “
Propagation failure of excitation waves on trees and random networks
,”
Europhys. Lett.
106
,
68001
(
2014
).
40.
T.
Isele
and
E.
Schöll
, “
Effect of small-world topology on wave propagation on networks of excitable elements
,”
New J. Phys.
17
,
023058
(
2015
).
41.
T.
Isele
,
B.
Hartung
,
P.
Hövel
, and
E.
Schöll
, “
Excitation waves on a minimal small-world model
,”
Eur. Phys. J. B
88
,
104
(
2015
).
42.
Y.
Kobayashi
,
H.
Kitahata
, and
M.
Nagayama
, “
Sustained dynamics of a weakly excitable system with nonlocal interactions
,”
Phys. Rev. E
96
,
022213
(
2017
).
43.
C.
Fretter
,
A.
Lesne
,
C. C.
Hilgetag
, and
M. T.
Hütt
, “
Topological determinants of self-sustained activity in a simple model of excitable dynamics on graphs
,”
Sci. Rep.
7
,
42340
(
2017
).
44.
Y.
Qian
,
X.
Huang
,
G.
Hu
, and
X.
Liao
, “
Structure and control of self-sustained target waves in excitable small-world networks
,”
Phys. Rev. E
81
,
036101
(
2010
).
45.
Y.
Qian
,
X.
Liao
,
X.
Huang
,
Y.
Mi
,
L.
Zhang
, and
G.
Hu
, “
Diverse self-sustained oscillatory patterns and their mechanisms in excitable small-world networks
,”
Phys. Rev. E
82
,
026107
(
2010
).
46.
X.
Liao
,
Q.
Xia
,
Y.
Qian
,
L.
Zhang
,
G.
Hu
, and
Y.
Mi
, “
Pattern formation in oscillatory complex networks consisting of excitable nodes
,”
Phys. Rev. E
83
,
056204
(
2011
).
47.
Y.
Mi
,
L.
Zhang
,
X.
Huang
,
Y.
Qian
,
G.
Hu
, and
X.
Liao
, “
Complex networks with large numbers of labelable attractors
,”
Europhys. Lett.
95
,
58001
(
2011
).
48.
Y.
Qian
, “
Emergence of self-sustained oscillations in excitable Erdös-Rényi random networks
,”
Phys. Rev. E
90
,
032807
(
2014
).
49.
Y.
Qian
,
H.
Cui
, and
Z.
Zheng
, “
Minimum Winfree loop determines self-sustained oscillations in excitable Erdös-Rényi random networks
,”
Sci. Rep.
7
,
5746
(
2017
).
50.
Z.
Zheng
and
Y.
Qian
, “
Dominant phase-advanced driving analysis of self-sustained oscillations in biological networks
,”
Chin. Phys. B
27
,
018901
(
2018
).
51.
A. T.
Winfree
, “
Varieties of spiral wave behavior: An experimentalists approach to the theory of excitable media
,”
Chaos
1
,
303
334
(
1991
).
52.
M.
Bär
and
M.
Eiswirth
, “
Turbulence due to spiral breakup in a continuous excitable medium
,”
Phys. Rev. E
48
,
R1635
R1637
(
1993
).
You do not currently have access to this content.