One of the spatiotemporal patterns exhibited by coupled map lattices with nearest-neighbor coupling is the appearance of chaotic defects, which are spatially localized regions of chaotic dynamics with a particlelike behavior. Chaotic defects display random behavior and diffuse along the lattice with a Gaussian signature. In this note, we investigate some dynamical properties of chaotic defects in a lattice of coupled chaotic quadratic maps. Using a recurrence-based diagnostic, we found that the motion of chaotic defects is well-represented by a stochastic time series with a power-law spectrum 1/fσ with 2.3σ2.4, i.e., a correlated Brownian motion. The correlation exponent corresponds to a memory effect in the Brownian motion and increases with a system parameter as the diffusion coefficient of chaotic defects.

1.
M. C.
Cross
and
P. C.
Hohenberg
,
Rev. Mod. Phys.
65
,
851
(
1993
).
2.
E.
Schöll
,
Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors
(
Cambridge University Press
,
2001
).
3.
V.
Petrov
,
M. F.
Crowley
, and
K.
Shoewalter
,
J. Chem. Phys.
101
,
6606
(
1994
).
4.
J.
Bascompte
and
R. V.
Soléb
,
Trends Ecol. Evol.
10
,
361
(
1995
).
5.
O.
Pertz
,
L.
Hodgson
,
R. L.
Klemke
, and
K. M.
Hahn
,
Nature
440
,
1069
(
2006
).
6.
C. M.
Michel
,
M.
Seeck
, and
T.
Landis
,
News Physiol. Sci.
14
,
206
(
1999
).
7.
K.
Kaneko
and
I.
Tsuda
,
Complex Systems, Chaos and Beyond: A Constructive Approach with Applications in Life Sciences
(
Springer
,
New York
,
2001
).
8.
K.
Kaneko
,
Physica D
34
,
1
(
1989
).
9.
R.
Badii
and
A.
Politi
,
Complexity, Hierarchical Structures and Scaling in Physics
(
Cambridge University Press
,
1997
).
10.
D. M.
Abrams
and
S. H.
Strogatz
,
Phys. Rev. Lett.
93
,
174102
(
2004
).
11.
K.
Kaneko
,
Europhys. Lett.
6
,
193
(
1988
).
12.
A. M.
Batista
and
R. L.
Viana
,
Phys. Lett. A
286
,
134
(
2001
).
13.
J.
Beran
,
Statistics for Long-Memory Processes
(
Chapman & Hall/CRC
,
1994
).
14.
G.
Corso
,
T. de L.
Prado
,
G. Z.
dos Santos
,
J.
Kurths
, and
S. R.
Lopes
,
Chaos
28
,
083108
(
2018
).
15.
N.
Marwan
,
M. C.
Romano
,
M.
Thiel
, and
J.
Kurths
,
Phys. Rep.
438
,
237
(
2007
).
16.
J. P.
Eckmann
,
S. O.
Kamphorst
, and
D.
Ruelle
,
Europhys. Lett.
4
,
963
(
1987
).
17.
J. P.
Zbilut
and
C. L.
Webber
, Jr.,
Phys. Lett. A
171
,
199
(
1992
).
18.
E. T.
Jaynes
,
Phys. Rev.
106
,
620
(
1957
).
You do not currently have access to this content.