Locating the source node that initiates a diffusion process is an increasingly popular topic that contributes new insights into the maintenance of cyber security, rumor detection in social media, digital surveillance of infectious diseases, etc. Existing studies select the observers randomly or select them heuristically according to the network centrality or community measures. However, there still lacks a method to identify the minimum set of observers for accurately locating the source node of information diffusion in cyber physical networks. Here, we fill this knowledge gap by proposing a greedy optimization algorithm by analyzing the differences of the propagation delay. We use extensive simulations with both synthetic and empirical networks to show that the number of observers can be substantially decreased: Our method only uses a small fraction of nodes (10%–20%) as observers in most networks, whereas the conventional random selection methods have to use 2–3 times more nodes as observers. Interestingly, if a network has a large proportion of low-degree nodes (e.g., karate network), it is necessary to recruit more observers. In particular, the periphery nodes that are only connected with one edge must be observers. Combining our greedy optimization algorithm with the diffusion-back method, the performance of source localization is robust against noise.

1.
The Event Horizon Telescope Collaboration
, “
First M87 event horizon telescope results. I. The shadow of the supermassive black hole
,”
Astrophys. J. Lett.
875
(
1
),
L1
(
2019
).
2.
S.
Cauchemez
,
A.-J.
Valleron
,
P.-Y.
Boelle
,
A.
Flahault
, and
N. M.
Ferguson
, “
Estimating the impact of school closure on influenza transmission from sentinel data
,”
Nature
452
(
7188
),
750
754
(
2008
).
3.
D.-B.
Chen
,
H.-L.
Sun
,
Q.
Tang
,
S.-Z.
Tian
, and
M.
Xie
, “
Identifying influential spreaders in complex networks by propagation probability dynamics
,”
Chaos
29
,
033120
(
2019
).
4.
P. S.
Romualdo
,
C.
Castellano
,
P. V.
Mieghem
, and
A.
Vespignani
, “
Epidemic processes in complex networks
,”
Rev. Mod. Phys.
87
(
3
),
925
(
2015
).
5.
P.
Wang
,
M. C.
Gonzalez
,
C. A.
Hidalgo
, and
A. L.
Barabasi
, “
Understanding the spreading patterns of mobile phone viruses
,”
Science
324
(
5930
),
1071
1076
(
2009
).
6.
N.
Grinberg
,
K.
Joseph
,
L.
Friedland
,
B.
Swire-Thompson
, and
D.
Lazer
, “
Fake news on Twitter during the 2016 U.S. presidential election
,”
Science
363
(
6425
),
374
378
(
2019
).
7.
B.
Doerr
,
M.
Fouz
, and
T.
Friedrich
, “
Why rumors spread so quickly in social networks
,”
Commun. ACM
55
,
70
75
(
2012
).
8.
J.
Singh
, “
A new analysis for fractional rumor spreading dynamical model in a social network with Mittag-Leffler law
,”
Chaos
29
,
013137
(
2019
).
9.
H.-J.
Li
and
L.
Wang
, “
Multi-scale asynchronous belief percolation model on multiplex networks
,”
New J. Phys.
21
(
1
),
015005
(
2019
).
10.
G.
Neumann
,
T.
Noda
, and
Y.
Kawaoka
, “
Emergence and pandemic potential of swine-origin H1N1 influenza virus
,”
Nature
459
,
931
939
(
2009
).
11.
D.
He
,
R.
Lui
,
L
Wang
,
C. K.
Tse
,
L.
Yang
, and
L.
Stone
, “
Global spatio-temporal patterns of influenza in the post-pandemic era
,”
Sci. Rep.
5
,
11013
(
2015
).
12.
Z. L.
Hu
,
J. G.
Liu
,
G. Y.
Yang
, and
Z. M.
Ren
, “
Effects of the distance among multiple spreaders on the spreading
,”
Europhys. Lett.
106
(
1
),
18002
(
2014
).
13.
L.
Wang
,
Z.
Wang
,
Y.
Zhang
, and
X.
Li
, “
How human location-specific contact patterns impact spatial transmission between populations?
,”
Sci. Rep.
3
,
1468
(
2013
).
14.
L.
Wang
,
Y.
Zhang
,
T.
Huang
, and
X.
Li
, “
Estimating the value of containment strategies in delaying the arrival time of an influenza pandemic: A case study of travel restriction and patient isolation
,”
Phys. Rev. E
86
(
3
),
032901
(
2012
).
15.
Y.
Yang
,
T.
Nishikawa
, and
A. E.
Motter
, “
Small vulnerable sets determine large network cascades in power grids
,”
Science
358
,
6365
(
2017
).
16.
R. M.
Lee
,
M. J.
Assante
, and
T.
Conway
, “Analysis of the cyber attack on the Ukrainian power grid,” SANS and E-ISAC,
2016
.
17.
D.
Shah
and
T.
Zaman
, “
Detecting sources of computer viruses in networks: Theory and experiment
,”
ACM SIGMETRICS Perform. Eval. Rev.
38
,
203
214
(
2010
).
18.
W.
Luo
,
W. P.
Tay
, and
M.
Leng
, “
Identifying infection sources and regions in large networks
,”
IEEE Trans. Singal Process.
61
,
2850
2865
(
2013
).
19.
F.
Ji
and
W. P.
Tay
, “
An algorithmic framework for estimating rumor sources with different start time
,”
IEEE Trans. Signal Process.
65
,
2517
2530
(
2017
).
20.
A. Y.
Lokhov
,
M.
Mézard
,
H.
Ohta
, and
L.
Zdeborová
, “
Inferring the origin of an epidemic with a dynamic message-passing algorithm
,”
Phys. Rev. E
90
,
012801
(
2014
).
21.
F.
Altarelli
,
A.
Braunstein
,
L.
Dall’Asta
,
A.
Lage-Castellanos
, and
R.
Zecchina
, “
Bayesian inference of epidemics on networks via belief propagation
,”
Phys. Rev. Lett.
112
,
118701
(
2014
).
22.
K.
Zhu
and
L.
Ying
, “
Information source detection in the SIR model: A sample-path-based approach
,”
IEEE ACM Trans. Netw.
24
,
408
421
(
2016
).
23.
B.
Chang
,
E.
Chen
,
F.
Zhu
,
Q.
Liu
,
T.
Xu
, and
Z.
Wang
, “
Maximum a posteriori estimation for information source detection
,”
IEEE Trans. Syst. Man Cybern. Syst.
(
published online
).
24.
A.
Louni
and
K. P.
Subbalakshmi
, “
Who spread that rumor: Finding the source of information in large online social networks with probabilistically varying internode relationship strengths
,”
IEEE Trans. Comput. Social Syst.
5
,
335
343
(
2018
).
25.
N.
Antulov-Fantulin
,
A.
Lancic
,
T.
Smuc
,
H.
Stefancic
, and
M.
Sikic
, “
Identification of patient zero in static and temporal networks: Robustness and limitations
,”
Phys. Rev. Lett.
114
,
248701
(
2015
).
26.
J. B.
Wang
,
L.
Wang
, and
X.
Li
, “
Identifying spatial invasion of pandemics on metapopulation networks via anatomizing arrival history
,”
IEEE Trans. Cyber.
46
,
2782
2795
(
2016
).
27.
L.
Wang
and
X.
Li
, “
Spatial epidemiology of networked metapopulation: An overview
,”
Chin. Sci. Bull.
59
,
3511
3522
(
2014
).
28.
X.
Li
and
X.
Li
, “
Reconstruction of stochastic temporal networks through diffusive arrival times
,”
Nat. Commun.
8
,
15729
(
2017
).
29.
L.
Wang
and
J. T.
Wu
, “
Characterizing the dynamics underlying global spread of epidemics
,”
Nat. Commun.
9
,
218
(
2018
).
30.
P. C.
Pinto
,
P.
Thiran
, and
M.
Vetterli
, “
Locating the source of diffusion in large-scale networks
,”
Phys. Rev. Lett.
109
,
068702
(
2012
).
31.
Z.
Shen
,
S.
Cao
,
W. X.
Wang
,
Z.
Di
, and
H. E.
Stanley
, “
Locating the source of diffusion in complex networks by time-reversal backward spreading
,”
Phys. Rev. E
93
,
032301
(
2016
).
32.
L.
Fu
,
Z.
Shen
,
W. X.
Wang
,
Y.
Fan
, and
Z.
Di
, “
Multi-source localization on complex networks with limited observers
,”
Europhys. Lett.
113
,
180061
(
2016
).
33.
Z. L.
Hu
,
Z.
Shen
,
C. B.
Tang
,
B. B.
Xie
, and
J. F.
Lu
, “
Localization of diffusion sources in complex networks with sparse observations
,”
Phys. Lett. A
382
,
931
937
(
2018
).
34.
H.
Wang
, “
An universal algorithm for source location in complex networks
,”
Physica A
514
,
620
630
(
2019
).
35.
W.
Tang
,
F.
Ji
, and
W. P.
Tay
, “
Estimating infection sources in networks using partial timestamps
,”
IEEE Trans. Inf. Forensics Secur.
13
,
3305
3349
(
2018
).
36.
R.
Paluch
,
X.
Lu
,
K.
Suchecki
,
B. K.
Szymanski
, and
J. A.
Holyst
, “
Fast and accurate detection of spread source in large complex networks
,”
Sci. Rep.
8
,
2508
(
2018
).
37.
Z. L.
Hu
,
X.
Han
,
Y. C.
Lai
, and
W. X.
Wang
, “
Optimal localization of diffusion sources in complex networks
,”
R. Soc. Open Sci.
4
,
170091
(
2017
).
38.
P.
Erdös
and
A.
Rényi
, “
On the evolution of random graphs
,”
Publ. Math. Inst. Hungar. Acad. Sci.
5
,
17
61
(
1960
).
39.
A. L.
Barabási
and
R.
Albert
, “
Emergence of scaling in random networks
,”
Science
286
,
509
512
(
1999
).
40.
W.
DeNooy
,
A.
Mrvar
, and
V.
Batagelj
, Exploratory Social Network Analysis with Pajek, Structural Analysis in the Social Sciences Vol. 27 (Cambridge University Press, 2011), pp. 509–512.
41.
B. F.
Maier
and
D.
Brockmann
, “
Cover time for random walks on arbitrary complex networks
,”
Phys. Rev. E
96
,
042307
(
2017
).
42.
M.
Girvan
and
M. E. J.
Newman
, “
Community structure in social and biological networks
,”
Proc. Natl. Acad. Sci. U.S.A.
99
,
7821
7826
(
2002
).
43.
P.
Gleiser
and
L.
Danon
, “
Community structure in jazz
,”
Adv. Comp. Syst.
6
,
565
573
(
2003
).
44.
W. W.
Zachary
, “
An information flow model for conflict and fission in small groups
,”
J. Anthropol. Res.
33
,
452
473
(
1977
).
45.
T.
Fawcett
, “
An introduction to ROC analysis
,”
Pattern Recognit. Lett.
27
,
861
874
(
2006
).
46.
J. A.
Hanley
and
B. J.
McNeil
, “
The meaning and use of the area under a receiver operating characteristic (ROC) curve
,”
Radiology
143
,
29
36
(
1982
).
47.
J.
Jiang
,
S.
Wen
,
S.
Yu
,
Y.
Xiang
, and
W.
Zhou
, “
Rumor source identification in social networks with time-varying topology
,”
IEEE Trans. Dependable Secure Comput.
15
,
166
179
(
2018
).
48.
Z. L.
Hu
,
Z.
Shen
,
S.
Cao
,
B.
Podobnik
,
H.
Yang
,
W. X.
Wang
, and
Y. C.
Lai
, “
Locating multiple diffusion sources in time varying networks from sparse observations
,”
Sci. Rep.
8
,
2685
(
2018
).
You do not currently have access to this content.