The oceans and atmosphere interact via a multiplicity of feedback mechanisms, shaping to a large extent the global climate and its variability. To deepen our knowledge of the global climate system, characterizing and investigating this interdependence is an important task of contemporary research. However, our present understanding of the underlying large-scale processes is greatly limited due to the manifold interactions between essential climatic variables at different temporal scales. To address this problem, we here propose to extend the application of complex network techniques to capture the interdependence between global fields of sea-surface temperature (SST) and precipitation (P) at multiple temporal scales. For this purpose, we combine time-scale decomposition by means of a discrete wavelet transform with the concept of coupled climate network analysis. Our results demonstrate the potential of the proposed approach to unravel the scale-specific interdependences between atmosphere and ocean and, thus, shed light on the emerging multiscale processes inherent to the climate system, which traditionally remain undiscovered when investigating the system only at the native resolution of existing climate data sets. Moreover, we show how the relevant spatial interdependence structures between SST and P evolve across time-scales. Most notably, the strongest mutual correlations between SST and P at annual scale (8–16 months) concentrate mainly over the Pacific Ocean, while the corresponding spatial patterns progressively disappear when moving toward longer time-scales.

1.
E. B.
Kraus
and
J. A.
Businger
,
Atmosphere-Ocean Interaction
(
Oxford University Press
,
1994
).
2.
S.
Gadgil
,
P. V.
Joseph
, and
N. V.
Joshi
, “
Ocean-atmosphere coupling over monsoon regions
,”
Nature
312
,
141
143
(
1984
).
3.
K. E.
Trenberth
and
J. W.
Hurrell
, “
Decadal atmosphere-ocean variations in the Pacific
,”
Clim. Dyn.
9
(
6
),
303
319
(
1994
).
4.
K. E.
Trenberth
, “
The definition of El Niño
,”
Bull. Am. Meteorol. Soc.
78
(
12
),
2771
2778
(
1997
).
5.
C.
Deser
,
R.
Tomas
,
M.
Alexander
, and
D.
Lawrence
, “
The seasonal atmospheric response to projected arctic sea ice loss in the late twenty-first century
,”
J. Clim.
23
(
2
),
333
351
(
2010
).
6.
A.
Agarwal
,
N.
Marwan
,
R.
Maheswaran
,
B.
Merz
, and
J.
Kurths
, “
Quantifying the roles of single stations within homogeneous regions using complex network analysis
,”
J. Hydrol. (Amst)
563
,
802
810
(
2018
).
7.
M. K.
Roxy
,
K.
Ritika
,
P.
Terray
, and
S.
Masson
, “
The curious case of Indian Ocean warming
,”
J. Clim.
27
(
22
),
8501
8509
(
2014
).
8.
K. E.
Trenberth
and
D. J.
Shea
, “
Relationships between precipitation and surface temperature
,”
Geophys. Res. Lett.
32
(
14
),
L14703
, https://doi.org/10.1029/2005GL022760 (
2005
).
9.
B.
Wang
,
Q.
Ding
,
X.
Fu
,
I.-S.
Kang
,
K.
Jin
,
J.
Shukla
, and
F.
Doblas-Reyes
, “
Fundamental challenge in simulation and prediction of summer monsoon rainfall
,”
Geophys. Res. Lett.
32
(
15
),
L15711
, https://doi.org/10.1029/2005GL022734 (
2005
).
10.
D.
Looney
,
A.
Hemakom
, and
D. P.
Mandic
, “
Intrinsic multi-scale analysis: A multi-variate empirical mode decomposition framework
,”
Proc. R. Soc. Math. Phys. Eng. Sci.
471
(
2173
),
20140709
(
2015
).
11.
K.
Coughlin
and
K. K.
Tung
, “
Eleven-year solar cycle signal throughout the lower atmosphere
,”
J. Geophys. Res., [Atmos.]
109
(
D21
),
D21105
, https://doi.org/10.1029/2004JD004873 (
2004
).
12.
K.
Steinhaeuser
,
A. R.
Ganguly
, and
N. V.
Chawla
, “
Multivariate and multiscale dependence in the global climate system revealed through complex networks
,”
Clim. Dyn.
39
(
3
),
889
895
(
2012
).
13.
G. A.
Bradshaw
and
B. A.
McIntosh
, “
Detecting climate-induced patterns using wavelet analysis
,”
Environ. Pollut.
83
(
1
),
135
142
(
1994
).
14.
K.-M.
Lau
and
H.
Weng
, “
Climate signal detection using wavelet transform: How to make a time series sing
,”
Bull. Am. Meteorol. Soc.
76
(
12
),
2391
2402
(
1995
).
15.
N.
Jajcay
,
J.
Hlinka
,
S.
Kravtsov
,
A. A.
Tsonis
, and
M.
Paluš
, “
Time scales of the European surface air temperature variability: The role of the 7–8 year cycle
,”
Geophys. Res. Lett.
43
(
2
),
902
909
, https://doi.org/10.1002/grl.v43.2 (
2016
).
16.
M.
Paluš
, “Linked by dynamics: Wavelet-based mutual information rate as a connectivity measure and scale-specific networks,” in Advances in Nonlinear Geosciences, edited by A. A. Tsonisor (Springer International Publishing, 2018), pp. 427–463.
17.
M.
Paluš
, “
Multiscale atmospheric dynamics: Cross-frequency phase-amplitude coupling in the air temperature
,”
Phys. Rev. Lett.
112
,
078702
(
2014
).
18.
A. A.
Tsonis
and
P. J.
Roebber
, “
The architecture of the climate network
,”
Physica A
333
,
497
504
(
2004
).
19.
A. A.
Tsonis
,
K. L.
Swanson
, and
P. J.
Roebber
, “
What do networks have to do with climate?
,”
Bull. Am. Meteorol. Soc.
87
(
5
),
585
596
(
2006
).
20.
J. F.
Donges
,
Y.
Zou
,
N.
Marwan
, and
J.
Kurths
, “
The backbone of the climate network
,”
Europhys. Lett.
87
(
4
),
48007
(
2009
).
21.
J. F.
Donges
,
Y.
Zou
,
N.
Marwan
, and
J.
Kurths
, “
Complex networks in climate dynamics
,”
Eur. Phys. J. Spec. Top.
174
(
1
),
157
179
(
2009
).
22.
D.
Helbing
,
D.
Brockmann
,
T.
Chadefaux
,
K.
Donnay
,
U.
Blanke
,
O.
Woolley-Meza
,
M.
Moussaid
,
A.
Johansson
,
J.
Krause
,
S.
Schutte
, and
M.
Perc
, “
Saving human lives: What complexity science and information systems can contribute
,”
J. Stat. Phys.
158
(
3
),
735
781
(
2015
).
23.
J. F.
Donges
,
H. C. H.
Schultz
,
N.
Marwan
,
Y.
Zou
, and
J.
Kurths
, “
Investigating the topology of interacting networks
,”
Eur. Phys. J. B
84
(
4
),
635
651
(
2011
).
24.
A.
Feng
,
Z.
Gong
,
Q.
Wang
, and
G.
Feng
, “
Three-dimensional air–sea interactions investigated with bilayer networks
,”
Theor. Appl. Climatol.
109
(
3
),
635
643
(
2012
).
25.
M.
Wiedermann
,
J. F.
Donges
,
D.
Handorf
,
J.
Kurths
, and
R. V.
Donner
, “
Hierarchical structures in Northern Hemispheric extratropical winter ocean–atmosphere interactions
,”
Int. J. Climatol.
37
(
10
),
3821
3836
(
2016
).
26.
J. M.
Peters
and
S.
Kravtsov
, “
Origin of non-gaussian regimes and predictability in an atmospheric model
,”
J. Atmos. Sci.
69
(
8
),
2587
2599
(
2012
).
27.
M.
Perron
and
P.
Sura
, “
Climatology of non-gaussian atmospheric statistics
,”
J. Clim.
26
(
3
),
1063
1083
(
2013
).
28.
P.
Sura
and
A.
Hannachi
, “
Perspectives of non-gaussianity in atmospheric synoptic and low-frequency variability
,”
J. Clim.
28
(
13
),
5091
5114
(
2015
).
29.
A.
Hannachi
,
D. M.
Straus
,
C. L. E.
Franzke
,
S.
Corti
, and
T.
Woollings
, “
Low-frequency nonlinearity and regime behavior in the northern hemisphere extratropical atmosphere
,”
Rev. Geophys.
55
(
1
),
199
234
, https://doi.org/10.1002/2015RG000509 (
2017
).
30.
M.
Linz
,
G.
Chen
, and
Z.
Hu
, “
Large-scale atmospheric control on non-gaussian tails of midlatitude temperature distributions
,”
Geophys. Res. Lett.
45
(
17
),
9141
9149
, https://doi.org/10.1029/2018GL079324 (
2018
).
31.
C.
Ciemer
,
N.
Boers
,
H. M. J.
Barbosa
,
J.
Kurths
, and
A.
Rammig
, “
Temporal evolution of the spatial covariability of rainfall in South America
,”
Clim. Dyn.
51
(
1
),
371
382
(
2018
).
32.
M.
Rathinasamy
,
R.
Khosa
,
J.
Adamowski
,
C.
Sudheer
,
G.
Partheepan
,
J.
Anand
, and
B.
Narsimlu
, “
Wavelet-based multiscale performance analysis: An approach to assess and improve hydrological models
,”
Water. Resour. Res.
50
(
12
),
9721
9737
, https://doi.org/10.1002/2013WR014650 (
2014
).
33.
D. B.
Percival
, “Analysis of geophysical time series using discrete wavelet transforms: An overview,” in Nonlinear Time Series Analysis in the Geosciences: Applications in Climatology, Geodynamics and Solar-Terrestrial Physics, edited by R. V. Donner and S. M. Barbosa (Springer, Berlin, 2008), pp. 61–79.
34.
A.
Agarwal
,
R.
Maheswaran
,
N.
Marwan
,
L.
Caesar
, and
J.
Kurths
, “
Wavelet-based multiscale similarity measure for complex networks
,”
Eur. Phys. J. B
91
(
11
),
296
(
2018
).
35.
A.
Agarwal
,
N.
Marwan
,
M.
Rathinasamy
,
B.
Merz
, and
J.
Kurths
, “
Multi-scale event synchronization analysis for unravelling climate processes: A wavelet-based approach
,”
Nonlinear Process. Geophys.
24
(
4
),
599
611
(
2017
).
36.
J.
Kurths
,
A.
Agarwal
,
N.
Marwan
,
M.
Rathinasamy
,
L.
Caesar
,
R.
Krishnan
, and
B.
Merz
, “
Unraveling the spatial diversity of Indian precipitation teleconnections via nonlinear multi-scale approach
,”
Nonlinear Process. Geophys. Discuss.
(
to be published
).
37.
S.
Lovejoy
, “
Spectra, intermittency, and extremes of weather, macroweather and climate
,”
Sci. Rep.
8
(
1
),
12697
(
2018
).
38.
A.
Radebach
,
R. V.
Donner
,
J.
Runge
,
J. F.
Donges
, and
J.
Kurths
, “
Disentangling different types of El Niño episodes by evolving climate network analysis
,”
Phys. Rev. E
88
(
5
),
052807
(
2013
).
39.
F.
Arizmendi
,
A. C.
Martí
, and
M.
Barreiro
, “
Evolution of atmospheric connectivity in the 20th century
,”
Nonlinear Process. Geophys.
21
(
4
),
825
839
(
2014
).
40.
A.
Agarwal
, “
Unraveling spatio-temporal climatic patterns via multi-scale complex networks
,” Ph.D. thesis (
University of Potsdam
,
2019
).
41.
J.
Heitzig
,
J. F.
Donges
,
Y.
Zou
,
N.
Marwan
, and
J.
Kurths
, “
Node-weighted measures for complex networks with spatially embedded, sampled, or differently sized nodes
,”
Eur. Phys. J. B
85
(
1
),
38
(
2012
).
42.
N. J.
Mantua
and
S. R.
Hare
, “
The pacific decadal oscillation
,”
J. Oceanography
58
(
1
),
35
44
(
2002
).
43.
S.-W.
Yeh
,
W.
Cai
,
S.-K.
Min
,
M. J.
McPhaden
,
D.
Dommenget
,
B.
Dewitte
,
M.
Collins
,
K.
Ashok
,
S.-I.
An
,
B.-Y.
Yim
, and
J.-S.
Kug
, “
Enso atmospheric teleconnections and their response to greenhouse gas forcing
,”
Rev. Geophys.
56
(
1
),
185
206
, https://doi.org/10.1002/rog.v56.1 (
2018
).
44.
J. C. H.
Chiang
and
D. J.
Vimont
, “
Analogous pacific and atlantic meridional modes of tropical atmosphere–ocean variability
,”
J. Clim.
17
(
21
),
4143
4158
(
2004
).
45.
E.
Di Lorenzo
,
G.
Liguori
,
N.
Schneider
,
J. C.
Furtado
,
B. T.
Anderson
, and
M. A.
Alexander
, “
Enso and meridional modes: A null hypothesis for pacific climate variability
,”
Geophys. Res. Lett.
42
(
21
),
9440
9448
, https://doi.org/10.1002/2015GL066281 (
2015
).
46.
R. C.
Wills
,
T.
Schneider
,
J. M.
Wallace
,
D. S.
Battisti
, and
D. L.
Hartmann
, “
Disentangling global warming multidecadal variability, and El Niño in pacific temperatures
,”
Geophys. Res. Lett.
45
(
5
),
2487
2496
, https://doi.org/10.1002/grl.v45.5 (
2018
).
47.
Y. Y. S.
Yiu
, “El Niño Southern Oscillation teleconnections and their effects on the Amundsen Sea region,” Thesis (University of Cambridge, 2018).
48.
J. C.
Rogers
and
H.
van Loon
, “
Spatial variability of sea level pressure and 500 mb height anomalies over the Southern Hemisphere
,”
Monthly Weather Rev.
110
(
10
),
1375
1392
(
1982
).
49.
J. S.
Risbey
,
M. J.
Pook
,
P. C.
McIntosh
,
M. C.
Wheeler
, and
H. H.
Hendon
, “
On the remote drivers of rainfall variability in Australia
,”
Monthly Weather Rev.
137
(
10
),
3233
3253
(
2009
).
50.
N. P.
Gillett
,
T. D.
Kell
, and
P. D.
Jones
, “
Regional climate impacts of the Southern annular mode
,”
Geophys. Res. Lett.
33
(
23
),
L23704
, https://doi.org/10.1029/2006GL027721 (
2006
).
51.
Z.
Wu
,
J.
Li
,
B.
Wang
, and
X.
Liu
, “
Can the Southern Hemisphere annular mode affect China winter monsoon?
,”
J. Geophys. Res., [Atmos.]
114
(
D11
),
D11107
, https://doi.org/10.1029/2008JD011501 (
2009
).
52.
M. E.
Linkin
and
S.
Nigam
, “
The North Pacific Oscillation–West Pacific teleconnection pattern: Mature-phase structure and winter impacts
,”
J. Clim.
21
(
9
),
1979
1997
(
2008
).
53.
S.-J.
Shin
and
S.-I.
An
, “
Interdecadal change in the relationship between the North Pacific Oscillation and the Pacific meridional mode and its impact on ENSO
,”
Asia-Pacific J. Atmos. Sci.
54
(
1
),
63
76
(
2018
).
54.
L.
Wang
and
W.
Chen
, “
An intensity index for the East Asian winter monsoon
,”
J. Clim.
27
(
6
),
2361
2374
(
2014
).
55.
M. N.
Raphael
,
G. J.
Marshall
,
J.
Turner
,
R. L.
Fogt
,
D.
Schneider
,
D. A.
Dixon
,
J. S.
Hosking
,
J. M.
Jones
, and
W. R.
Hobbs
, “
The Amundsen Sea low: Variability, change, and impact on Antarctic climate
,”
Bull. Am. Meteorol. Soc.
97
(
1
),
111
121
(
2016
).
56.
N. H.
Saji
,
B. N.
Goswami
,
P. N.
Vinayachandran
, and
T.
Yamagata
, “
A dipole mode in the tropical Indian Ocean
,”
Nature
401
(
6751
),
360
363
(
1999
).
57.
P. J.
Webster
,
A. M.
Moore
,
J. P.
Loschnigg
, and
R. R.
Leben
, “
Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997–98
,”
Nature
401
(
6751
),
356
360
(
1999
).
58.
S. C.
Chan
,
S. K.
Behera
, and
T.
Yamagata
, “
Indian Ocean dipole influence on South American rainfall
,”
Geophys. Res. Lett.
35
(
14
),
L14S12
, https://doi.org/10.1029/2008GL034204 (
2008
).
59.
N.
Singhrattna
,
B.
Rajagopalan
,
M.
Clark
, and
K.
Krishna Kumar
, “
Seasonal forecasting of Thailand summer monsoon rainfall
,”
Int. J. Climatol.
25
(
5
),
649
664
(
2005
).
60.
Y.
Qiu
,
W.
Cai
,
X.
Guo
, and
B.
Ng
, “
The asymmetric influence of the positive and negative IOD events on China’s rainfall
,”
Sci. Rep.
4
,
4943
(
2014
).
61.
C. J. C.
Reason
, “
Subtropical Indian Ocean SST dipole events and southern African rainfall
,”
Geophys. Res. Lett.
28
(
11
),
2225
2227
, https://doi.org/10.1029/2000GL012735 (
2001
).
62.
J. F.
Lübbecke
,
B.
Rodríguez-Fonseca
,
I.
Richter
,
M.
Marín-Rey
,
T.
Losada
,
I.
Polo
, and
N. S.
Keenlyside
, “
Equatorial Atlantic variability—modes, mechanisms, and global teleconnections
,”
Wiley Interdiscip. Rev. Clim. Change
9
(
4
),
e527
(
2018
).
63.
E.
Mohino
and
T.
Losada
, “
Impacts of the Atlantic equatorial mode in a warmer climate
,”
Clim. Dyn.
45
(
7
),
2255
2271
(
2015
).
64.
T.
Losada
,
B.
Rodríguez-Fonseca
,
S.
Janicot
,
S.
Gervois
,
F.
Chauvin
, and
P.
Ruti
, “
A multi-model approach to the Atlantic equatorial mode: Impact on the West African monsoon
,”
Clim. Dyn.
35
(
1
),
29
43
(
2010
).
65.
A.
Giannini
,
R.
Saravanan
, and
P.
Chang
, “
The preconditioning role of tropical Atlantic variability in the development of the ENSO teleconnection: Implications for the prediction of Nordeste rainfall
,”
Clim. Dyn.
22
(
8
),
839
855
(
2004
).
66.
J.
García-Serrano
,
T.
Losada
, and
B.
Rodríguez-Fonseca
, “
Extratropical atmospheric response to the Atlantic Niño decaying phase
,”
J. Clim.
24
(
6
),
1613
1625
(
2011
).
67.
A.
Perinelli
,
D. E.
Chiari
, and
L.
Ricci
, “
Correlation in brain networks at different time scale resolution
,”
Chaos
28
(
6
),
063127
(
2018
).
68.
K.
Gupta
and
G.
Ambika
, “Role of time scales and topology on the dynamics of complex networks,” e-print arXiv:1810.00687 (2018).
69.
J. F.
Donges
,
J.
Heitzig
,
B.
Beronov
,
M.
Wiedermann
,
J.
Runge
,
Q. Y.
Feng
,
L.
Tupikina
,
V.
Stolbova
,
R. V.
Donner
,
N.
Marwan
,
H. A.
Dijkstra
, and
J.
Kurths
, “
Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package
,”
Chaos
25
(
11
),
113101
(
2015
).
You do not currently have access to this content.