Localized traveling-wave solutions to a nonlinear Schrödinger equation were recently shown to be a consequence of Fourier mode synchronization. The reduced dynamics describing mode interaction take the form of a phase model with novel ternary coupling. We analyze this model in the presence of quenched disorder and explore transitions to partial and complete synchronization. For both Gaussian and uniform disorder, first-order transitions with hysteresis are observed. These results are compared with the phenomenology of the Kuramoto model which exhibits starkly different behavior. An infinite-oscillator limit of the model is derived and solved to provide theoretical predictions for the observed transitions. Treatment of the nonlocal ternary coupling in this limit sheds some light on the model’s novel structure.

1.
H.
Taheri
,
P.
Del’Haye
,
A. A.
Eftekhar
,
K.
Wiesenfeld
, and
A.
Adibi
, “
Self-synchronization phenomena in the Lugiato–Lefever equation
,”
Phys. Rev. A
96
,
013828
(
2017
).
2.
O.
McDuff
and
S.
Harris
, “
Nonlinear theory of the internally loss-modulated laser
,”
IEEE J. Quantum Electron.
3
,
101
111
(
1967
).
3.
D.
Kuizenga
and
A.
Siegman
, “
FM and AM mode locking of the homogeneous laser—Part I: Theory
,”
IEEE J. Quantum Electron.
6
,
694
708
(
1970
).
4.
M.
Sargent
,
Laser Physics
(
Addison-Wesley Pub. Co., Advanced Book Program
,
Reading, MA
,
1974
).
5.
H. A.
Haus
, “
Theory of mode locking with a fast saturable absorber
,”
J. Appl. Phys.
46
,
3049
3058
(
1975
).
6.
H.
Haus
,
J.
Fujimoto
, and
E.
Ippen
, “
Structures for additive pulse mode locking
,”
J. Opt. Soc. Am. B Opt. Phys.
8
,
2068
2076
(
1991
).
7.
H.
Haus
, “
Mode-locking of lasers
,”
IEEE J. Sel. Top. Quantum Electron.
6
,
1173
1185
(
2000
).
8.
O. E.
Martinez
,
R. L.
Fork
, and
J. P.
Gordon
, “
Theory of passively mode-locked lasers including self-phase modulation and group-velocity dispersion
,”
Opt. Lett.
9
,
156
158
(
1984
).
9.
H.
Haken
,
Light
(
North-Holland Pub Co
,
Amsterdam
,
1985
).
10.
Y. H.
Wen
,
M. R. E.
Lamont
,
S. H.
Strogatz
, and
A. L.
Gaeta
, “
Self-organization in Kerr-cavity-soliton formation in parametric frequency combs
,”
Phys. Rev. A
94
,
063843
(
2016
).
11.
H.
Taheri
,
A. A.
Eftekhar
,
K.
Wiesenfeld
, and
A.
Adibi
, “
Anatomy of phase locking in hyperparametric oscillations based on Kerr nonlinearity
,”
IEEE Photonics J.
9
,
6100911
(
2017
).
12.
L.
Lugiato
and
R.
Lefever
, “
Spatial dissipative structures in passive optical systems
,”
Phys. Rev. Lett.
58
,
2209
2211
(
1987
).
13.
Y.
Kuramoto
, “Self-entrainment of a population of coupled non-linear oscillators,” in International Symposium on Mathematical Problems in Theoretical Physics, edited by H. Araki (Springer, Berlin, 1975), pp. 420–422.
14.
P.
Ashwin
and
A.
Rodrigues
, “
Hopf normal form with sn symmetry and reduction to systems of nonlinearly coupled phase oscillators
,”
Phys. D Nonlinear Phenom.
325
,
14
24
(
2016
).
15.
A.
Gushchin
,
E.
Mallada
, and
A.
Tang
, “Synchronization of heterogeneous Kuramoto oscillators with graphs of diameter two,” in 2015 49th Annual Conference on Information Sciences and Systems (CISS) (IEEE, 2015), pp. 1–6.
16.
D.
Pazó
, “
Thermodynamic limit of the first-order phase transition in the Kuramoto model
,”
Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
72
,
046211
(
2005
).
17.
S.
Gupta
, “
Spontaneous collective synchronization in the Kuramoto model with additional non-local interactions
,”
J. Phys. A Math. Theor.
50
,
424001
(
2017
).
18.
S. H.
Strogatz
, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, Studies in Nonlinearity (Addison-Wesley Publications, Reading, MA, 1994).
19.
E.
Ott
and
T. M.
Antonsen
, “
Low dimensional behavior of large systems of globally coupled oscillators
,”
Chaos
18
,
037113
(
2008
).
20.
S. H.
Strogatz
, “
From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators
,”
Physica D
143
,
1
20
(
2000
).
21.
S. H.
Strogatz
, “Norbert Wiener’s brain waves,” in Frontiers in Mathematical Biology, edited by S. A. Levin (Springer, Berlin, 1994), pp. 122–138.
22.
Y.
Kuramoto
, Chemical Oscillations, Waves, and Turbulence, Springer Series in Synergetics, Vol. 19 (Springer-Verlag, Berlin, 1984).
You do not currently have access to this content.